The increasing order of a specific charge to mass ratio of an electron (e), proton (p), alpha particle (\[{{\alpha }}\]) and neutron (n) is:
(A) e e, p, n, \[\alpha \]
(B) n, p, e, \[\alpha \]
(C) n, \[\alpha \] , p, e
(D) n, p, \[\alpha \], e
Answer
Verified
118.5k+ views
Hint: The specific charge can be defined as the ratio of a charge of a subatomic particle or an ion to its mass. Now the subatomic particle under consideration could be an electro, neutron or proton. This charge to mass ratio finds to be extremely useful when we calculate the mass of any given particle. Also, it is widely used in mass spectroscopy.
Step by step solution:
To solve this question, you must know the charge and mass of an electron, proton, neutron and alpha particles.
Since a neutron is a neutral particle so it does not carry any charge that means charge on the neutron is zero. It has a mass of \[1.67 \times {10^{ - 27}}kg\].
Charge on an electron is \[1.6022 \times {10^{ - 19}}C\] and has a mass of\[9.109 \times {10^{ - 31}}kg\] .
Charge on proton is\[{{1}}{{.6022 \times 1}}{{\text{0}}^{{\text{ - 19}}}}{\text{C}}\] and has a rest of \[1.67 \times {10^{ - 27}}kg\].
Charge of an alpha particle is two times that of a proton and has a mass of 4 times that of proton.
Now, we calculate the ratio of specific charge to its mass.
Since charge on a neutron is zero so its ratio is also zero.
For electron, \[\dfrac{e}{m} = \dfrac{{1.6022 \times {{10}^{ - 19}}C}}{{9.109 \times {{10}^{ - 31}}kg}} = 1.76 \times {10^{11}}C/kg\]
For proton, \[\dfrac{e}{m} = \dfrac{{1.6022 \times {{10}^{ - 19}}C}}{{1.67 \times {{10}^{ - 27}}kg}} = 9.58 \times {10^7}C/kg\]
For alpha particle, \[\dfrac{e}{m} = \dfrac{{2 \times 1.6022 \times {{10}^{ - 19}}C}}{{4 \times 1.67 \times {{10}^{ - 27}}kg}} = 4.8 \times {10^7}C/kg\]
So, the increasing order of specific charge is n < \[{{\alpha }}\]< p < e.
Hence the correct option is C.
Note: The different elementary particles are often simply differentiated on the basis of two major criteria: Mass and Charge. Neutrons are neutral particles present inside the nucleus of an atom. Protons are positively charged particles also present inside the nucleus. Electrons are negatively charged particles revolving around the nucleus of an atom.
Step by step solution:
To solve this question, you must know the charge and mass of an electron, proton, neutron and alpha particles.
Since a neutron is a neutral particle so it does not carry any charge that means charge on the neutron is zero. It has a mass of \[1.67 \times {10^{ - 27}}kg\].
Charge on an electron is \[1.6022 \times {10^{ - 19}}C\] and has a mass of\[9.109 \times {10^{ - 31}}kg\] .
Charge on proton is\[{{1}}{{.6022 \times 1}}{{\text{0}}^{{\text{ - 19}}}}{\text{C}}\] and has a rest of \[1.67 \times {10^{ - 27}}kg\].
Charge of an alpha particle is two times that of a proton and has a mass of 4 times that of proton.
Now, we calculate the ratio of specific charge to its mass.
Since charge on a neutron is zero so its ratio is also zero.
For electron, \[\dfrac{e}{m} = \dfrac{{1.6022 \times {{10}^{ - 19}}C}}{{9.109 \times {{10}^{ - 31}}kg}} = 1.76 \times {10^{11}}C/kg\]
For proton, \[\dfrac{e}{m} = \dfrac{{1.6022 \times {{10}^{ - 19}}C}}{{1.67 \times {{10}^{ - 27}}kg}} = 9.58 \times {10^7}C/kg\]
For alpha particle, \[\dfrac{e}{m} = \dfrac{{2 \times 1.6022 \times {{10}^{ - 19}}C}}{{4 \times 1.67 \times {{10}^{ - 27}}kg}} = 4.8 \times {10^7}C/kg\]
So, the increasing order of specific charge is n < \[{{\alpha }}\]< p < e.
Hence the correct option is C.
Note: The different elementary particles are often simply differentiated on the basis of two major criteria: Mass and Charge. Neutrons are neutral particles present inside the nucleus of an atom. Protons are positively charged particles also present inside the nucleus. Electrons are negatively charged particles revolving around the nucleus of an atom.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6