
The increasing order of a specific charge to mass ratio of an electron (e), proton (p), alpha particle (\[{{\alpha }}\]) and neutron (n) is:
(A) e e, p, n, \[\alpha \]
(B) n, p, e, \[\alpha \]
(C) n, \[\alpha \] , p, e
(D) n, p, \[\alpha \], e
Answer
221.4k+ views
Hint: The specific charge can be defined as the ratio of a charge of a subatomic particle or an ion to its mass. Now the subatomic particle under consideration could be an electro, neutron or proton. This charge to mass ratio finds to be extremely useful when we calculate the mass of any given particle. Also, it is widely used in mass spectroscopy.
Step by step solution:
To solve this question, you must know the charge and mass of an electron, proton, neutron and alpha particles.
Since a neutron is a neutral particle so it does not carry any charge that means charge on the neutron is zero. It has a mass of \[1.67 \times {10^{ - 27}}kg\].
Charge on an electron is \[1.6022 \times {10^{ - 19}}C\] and has a mass of\[9.109 \times {10^{ - 31}}kg\] .
Charge on proton is\[{{1}}{{.6022 \times 1}}{{\text{0}}^{{\text{ - 19}}}}{\text{C}}\] and has a rest of \[1.67 \times {10^{ - 27}}kg\].
Charge of an alpha particle is two times that of a proton and has a mass of 4 times that of proton.
Now, we calculate the ratio of specific charge to its mass.
Since charge on a neutron is zero so its ratio is also zero.
For electron, \[\dfrac{e}{m} = \dfrac{{1.6022 \times {{10}^{ - 19}}C}}{{9.109 \times {{10}^{ - 31}}kg}} = 1.76 \times {10^{11}}C/kg\]
For proton, \[\dfrac{e}{m} = \dfrac{{1.6022 \times {{10}^{ - 19}}C}}{{1.67 \times {{10}^{ - 27}}kg}} = 9.58 \times {10^7}C/kg\]
For alpha particle, \[\dfrac{e}{m} = \dfrac{{2 \times 1.6022 \times {{10}^{ - 19}}C}}{{4 \times 1.67 \times {{10}^{ - 27}}kg}} = 4.8 \times {10^7}C/kg\]
So, the increasing order of specific charge is n < \[{{\alpha }}\]< p < e.
Hence the correct option is C.
Note: The different elementary particles are often simply differentiated on the basis of two major criteria: Mass and Charge. Neutrons are neutral particles present inside the nucleus of an atom. Protons are positively charged particles also present inside the nucleus. Electrons are negatively charged particles revolving around the nucleus of an atom.
Step by step solution:
To solve this question, you must know the charge and mass of an electron, proton, neutron and alpha particles.
Since a neutron is a neutral particle so it does not carry any charge that means charge on the neutron is zero. It has a mass of \[1.67 \times {10^{ - 27}}kg\].
Charge on an electron is \[1.6022 \times {10^{ - 19}}C\] and has a mass of\[9.109 \times {10^{ - 31}}kg\] .
Charge on proton is\[{{1}}{{.6022 \times 1}}{{\text{0}}^{{\text{ - 19}}}}{\text{C}}\] and has a rest of \[1.67 \times {10^{ - 27}}kg\].
Charge of an alpha particle is two times that of a proton and has a mass of 4 times that of proton.
Now, we calculate the ratio of specific charge to its mass.
Since charge on a neutron is zero so its ratio is also zero.
For electron, \[\dfrac{e}{m} = \dfrac{{1.6022 \times {{10}^{ - 19}}C}}{{9.109 \times {{10}^{ - 31}}kg}} = 1.76 \times {10^{11}}C/kg\]
For proton, \[\dfrac{e}{m} = \dfrac{{1.6022 \times {{10}^{ - 19}}C}}{{1.67 \times {{10}^{ - 27}}kg}} = 9.58 \times {10^7}C/kg\]
For alpha particle, \[\dfrac{e}{m} = \dfrac{{2 \times 1.6022 \times {{10}^{ - 19}}C}}{{4 \times 1.67 \times {{10}^{ - 27}}kg}} = 4.8 \times {10^7}C/kg\]
So, the increasing order of specific charge is n < \[{{\alpha }}\]< p < e.
Hence the correct option is C.
Note: The different elementary particles are often simply differentiated on the basis of two major criteria: Mass and Charge. Neutrons are neutral particles present inside the nucleus of an atom. Protons are positively charged particles also present inside the nucleus. Electrons are negatively charged particles revolving around the nucleus of an atom.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

