
The ionic product of water changes when:
A. An acid is added to it
B. A base is added to it
C. Either a base or an acid is added to it.
D. The temperature has changed.
Answer
132.9k+ views
Hint: The ionic product of water is the product of concentrations of ${{\text{H}}^{\text{ + }}}$ and ${\text{O}}{{\text{H}}^ - }$ ions in water at a particular temperature. It is denoted by ${{\text{K}}_{\text{w}}}$
Step-by-Step Explanation: Water is a weak electrolyte and ionizes only to a small extent. ‘The ionic product of the water is the product of concentrations of ions in which it is dissociated at a particular temperature’. The water is dissociated in the following manner-
$ \Rightarrow {{\text{H}}_2}{\text{O}} \rightleftharpoons {{\text{H}}^{\text{ + }}} + {\text{O}}{{\text{H}}^ - }$
Then ${{\text{K}}_{\text{w}}}$=$\dfrac{{\left[ {{{\text{H}}^{\text{ + }}}} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\text{H}}_2}{\text{O}}} \right]}}$
$ \Rightarrow {{\text{K}}_{\text{w}}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \left[ {{{\text{H}}^{\text{ + }}}} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Because $\left[ {{{\text{H}}_2}{\text{O}}} \right] = 1$ then,
$ \Rightarrow {{\text{K}}_{\text{w}}} = \left[ {{{\text{H}}^{\text{ + }}}} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Ionic products are temperature dependent because the Ionic product is directly proportional to the temperature.
By Le-Chatelier’s principle, as the temperature increases, the position of equilibrium shifts to the right of the equation to minimize the effect of increased temperature.
This means with the increase in temperature the concentration of$\left[ {{{\text{H}}^{\text{ + }}}} \right]$ and$\left[ {{\text{O}}{{\text{H}}^ - }} \right]$ ions will increase which will result in increased value of${{\text{K}}_{\text{w}}}$ as forward reaction is favoured.
This means that the ionic product depends only on temperature and is unaffected by any other changes.
Hence correct answer is ‘D’.
Note: Since concentration of hydrogen ion increases when temperature is increased and we know that pH is inversely proportional to concentration of hydrogen ion then the pH of water will decrease with increase in temperature. Also,
When,$\left[ {{{\text{H}}^{\text{ + }}}} \right] = \left[ {{\text{O}}{{\text{H}}^ - }} \right]$ then the solution is neutral [pure water is neutral].
When $\left[ {{{\text{H}}^{\text{ + }}}} \right] > \left[ {{\text{O}}{{\text{H}}^ - }} \right]$ then the solution becomes acidic.
When $\left[ {{{\text{H}}^{\text{ + }}}} \right] < \left[ {{\text{O}}{{\text{H}}^ - }} \right]$ then the solution becomes basic.
Step-by-Step Explanation: Water is a weak electrolyte and ionizes only to a small extent. ‘The ionic product of the water is the product of concentrations of ions in which it is dissociated at a particular temperature’. The water is dissociated in the following manner-
$ \Rightarrow {{\text{H}}_2}{\text{O}} \rightleftharpoons {{\text{H}}^{\text{ + }}} + {\text{O}}{{\text{H}}^ - }$
Then ${{\text{K}}_{\text{w}}}$=$\dfrac{{\left[ {{{\text{H}}^{\text{ + }}}} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\text{H}}_2}{\text{O}}} \right]}}$
$ \Rightarrow {{\text{K}}_{\text{w}}}\left[ {{{\text{H}}_2}{\text{O}}} \right] = \left[ {{{\text{H}}^{\text{ + }}}} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Because $\left[ {{{\text{H}}_2}{\text{O}}} \right] = 1$ then,
$ \Rightarrow {{\text{K}}_{\text{w}}} = \left[ {{{\text{H}}^{\text{ + }}}} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]$
Ionic products are temperature dependent because the Ionic product is directly proportional to the temperature.
By Le-Chatelier’s principle, as the temperature increases, the position of equilibrium shifts to the right of the equation to minimize the effect of increased temperature.
This means with the increase in temperature the concentration of$\left[ {{{\text{H}}^{\text{ + }}}} \right]$ and$\left[ {{\text{O}}{{\text{H}}^ - }} \right]$ ions will increase which will result in increased value of${{\text{K}}_{\text{w}}}$ as forward reaction is favoured.
This means that the ionic product depends only on temperature and is unaffected by any other changes.
Hence correct answer is ‘D’.
Note: Since concentration of hydrogen ion increases when temperature is increased and we know that pH is inversely proportional to concentration of hydrogen ion then the pH of water will decrease with increase in temperature. Also,
When,$\left[ {{{\text{H}}^{\text{ + }}}} \right] = \left[ {{\text{O}}{{\text{H}}^ - }} \right]$ then the solution is neutral [pure water is neutral].
When $\left[ {{{\text{H}}^{\text{ + }}}} \right] > \left[ {{\text{O}}{{\text{H}}^ - }} \right]$ then the solution becomes acidic.
When $\left[ {{{\text{H}}^{\text{ + }}}} \right] < \left[ {{\text{O}}{{\text{H}}^ - }} \right]$ then the solution becomes basic.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Which among the following is the softest metal A Platinum class 11 chemistry JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Thermodynamics Class 11 Notes: CBSE Chapter 5
