Answer
Verified
109.2k+ views
Hint: The\[C{{N}^{-}}\]is a strong field ligand. \[{{\left[ Fe{{\left( CN \right)}_{6}} \right]}^{3-}}\]will form an inner orbital complex. Finding the oxidation state of iron will help in determining its hybridization.
Complete step by step solution:
We have been given \[{{\left[ Fe{{\left( CN \right)}_{6}} \right]}^{3-}}\]as our coordination complex. Now first let us find out the oxidation number of iron. As you already know, the cyanide ion has an oxidation number of “$-1$”; taking iron atom’s oxidation state as “x” we form the following equation:
\[\begin{align}
& x+6(-1)=-3 \\
& \Rightarrow x=+3 \\
\end{align}\]
So iron can be seen as- $F{{e}^{3+}}$ . The atomic number of iron is $26$; its electronic configuration becomes: $1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{6}}$. The arrangement of electrons in its orbital is as follows:
In $F{{e}^{3+}}$ state, its electronic configuration would be:
As it is mentioned already in the hint, that cyanide is a strong field ligand, which means it will always form low spin complexes. As there are six of them, so the hybridization would be ${{d}^{2}}s{{p}^{3}}$, which is for octahedral geometry. The orbital configuration in the presence of the ligand would be-
So, the orbital configuration when the ligands would have donated their electrons is:
As you can see, there is one unpaired electron. This makes the coordinate complex paramagnetic in nature. From all the options, only option C is correct. Indeed, the compound is very stable.
Note:
Sometimes, these strong field ligands form low spin complexes. Although these occurrences are very rare, students are still advised to memorize some of these exceptions. Cyanide and CO are some of these.
Complete step by step solution:
We have been given \[{{\left[ Fe{{\left( CN \right)}_{6}} \right]}^{3-}}\]as our coordination complex. Now first let us find out the oxidation number of iron. As you already know, the cyanide ion has an oxidation number of “$-1$”; taking iron atom’s oxidation state as “x” we form the following equation:
\[\begin{align}
& x+6(-1)=-3 \\
& \Rightarrow x=+3 \\
\end{align}\]
So iron can be seen as- $F{{e}^{3+}}$ . The atomic number of iron is $26$; its electronic configuration becomes: $1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{6}}$. The arrangement of electrons in its orbital is as follows:
In $F{{e}^{3+}}$ state, its electronic configuration would be:
As it is mentioned already in the hint, that cyanide is a strong field ligand, which means it will always form low spin complexes. As there are six of them, so the hybridization would be ${{d}^{2}}s{{p}^{3}}$, which is for octahedral geometry. The orbital configuration in the presence of the ligand would be-
So, the orbital configuration when the ligands would have donated their electrons is:
As you can see, there is one unpaired electron. This makes the coordinate complex paramagnetic in nature. From all the options, only option C is correct. Indeed, the compound is very stable.
Note:
Sometimes, these strong field ligands form low spin complexes. Although these occurrences are very rare, students are still advised to memorize some of these exceptions. Cyanide and CO are some of these.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main