Answer
Verified
111.6k+ views
Hint: Use the formula of the self-induction of the solenoid given below, substitute the formula of the length of the wire and the area of the wire in the above formula and simplify it to obtain the relation for the self-induction of the solenoid.
Formula used:
The self-induction is given by
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Where $L$ is the self-induction of the solenoid, ${\mu _0}$ is the magnetic permeability, $l$ is the length of the solenoid and $A$ is the area of each turn in the solenoid.
Complete step by step solution:
Let us consider the wire is of length $x$
It is known that the length of the solenoid is $2\pi rN$ . Since the wire is in the shape of the cylinder, the cross sectional area is $A = \pi {r^2}$.
Use the formula of the self-induction,
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Substitute the formula of $N = \dfrac{x}{{2\pi r}}$ and the area as $\pi {r^2}$ in the above formula.
$L = \dfrac{{{\mu _0}{{\left( {\dfrac{x}{{2\pi r}}} \right)}^2}\left( {\pi {r^2}} \right)}}{l}$
By simplifying the above equation, we get
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4{\pi ^2}{r^2}}}} \right) \times \left( {\pi {r^2}} \right)}}{l}$
By canceling the similar terms in the above step.
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4\pi }}} \right)}}{l}$
By bringing the length of the wire in the left side and other terms in the right side of the equation.
$\dfrac{{\,Ll}}{{{\mu _0}}} = \left( {\dfrac{{{x^2}}}{{4\pi }}} \right)$
By the further simplification of the above equation,
$x = \sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
Hence the length of the wire obtained is $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $ .
Thus the option (C) is correct.
Note: The wire is in the form of the slender cylinder, hence the cross sectional area is considered as the $\pi {r^2}$ . The number of the rotation is calculated by dividing the whole length of the wire by the circumferential area of the wire as $2\pi r$.
Formula used:
The self-induction is given by
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Where $L$ is the self-induction of the solenoid, ${\mu _0}$ is the magnetic permeability, $l$ is the length of the solenoid and $A$ is the area of each turn in the solenoid.
Complete step by step solution:
Let us consider the wire is of length $x$
It is known that the length of the solenoid is $2\pi rN$ . Since the wire is in the shape of the cylinder, the cross sectional area is $A = \pi {r^2}$.
Use the formula of the self-induction,
$L = \dfrac{{{\mu _0}{N^2}A}}{l}$
Substitute the formula of $N = \dfrac{x}{{2\pi r}}$ and the area as $\pi {r^2}$ in the above formula.
$L = \dfrac{{{\mu _0}{{\left( {\dfrac{x}{{2\pi r}}} \right)}^2}\left( {\pi {r^2}} \right)}}{l}$
By simplifying the above equation, we get
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4{\pi ^2}{r^2}}}} \right) \times \left( {\pi {r^2}} \right)}}{l}$
By canceling the similar terms in the above step.
$L = \dfrac{{{\mu _0}\left( {\dfrac{{{x^2}}}{{4\pi }}} \right)}}{l}$
By bringing the length of the wire in the left side and other terms in the right side of the equation.
$\dfrac{{\,Ll}}{{{\mu _0}}} = \left( {\dfrac{{{x^2}}}{{4\pi }}} \right)$
By the further simplification of the above equation,
$x = \sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $
Hence the length of the wire obtained is $\sqrt {\dfrac{{4\pi Ll}}{{{\mu _0}}}} $ .
Thus the option (C) is correct.
Note: The wire is in the form of the slender cylinder, hence the cross sectional area is considered as the $\pi {r^2}$ . The number of the rotation is calculated by dividing the whole length of the wire by the circumferential area of the wire as $2\pi r$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main Chemistry Question Paper PDF Download with Answer Key
Trending doubts
Average and RMS Value for JEE Main
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Displacement-Time Graph and Velocity-Time Graph for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inertial and Non-Inertial Frame of Reference - JEE Important Topic
Charging and Discharging of Capacitor
Other Pages
Semicircular Ring - Centre of Mass and Its Application for JEE
Young's Double Slit Experiment Derivation
Clemmenson and Wolff Kishner Reductions for JEE
JEE Advanced 2025 Revision Notes for Practical Organic Chemistry
Explain the construction and working of a GeigerMuller class 12 physics JEE_Main
JEE Advanced 2025 Notes