Answer
Verified
99.9k+ views
Hint: Moment of Force $\left( {\overrightarrow \tau } \right)$ is defined as the vector product of position vector $\left( {\overrightarrow r } \right)$ and Force vector $\left( {\overrightarrow F } \right)$. The $x,y,z$ coordinates of any point work as coefficients of $\hat i,\hat j,\hat k$ respectively to find the position vector of any point.
Complete step by step answer:
In the figure we can see that the force $\overrightarrow F $ is passing through point $P$ with the given coordinates. A position vector is drawn from origin $\left( O \right)$ to $P$.
The moment of Force or Torque $\left( \tau \right)$ is defined as the cross product or vector product between the position vector $\left( {\overrightarrow r } \right)$ and Force vector $\overrightarrow {\left( F \right)} $.
The vector product or cross product of two vectors is defined as a vector having magnitude equal to the product of the magnitudes of said two vectors with the sine of angle between them, and direction perpendicular to the plane containing the two vectors in accordance with right hand thumb rule.
Let’s assume that there are two vectors $\overrightarrow A $ and $\overrightarrow B $, and their cross product is $\overrightarrow C $.Then
$\Rightarrow \overrightarrow C = \overrightarrow A \times \overrightarrow B $
$\Rightarrow \overrightarrow C = AB\sin \theta \hat n$
Where the direction of $\overrightarrow C $ is given by the unit vector $\hat n$.
When the vectors are written in the form of $\hat i,\hat j,\hat k$ the cross product can be calculated as,
$\overrightarrow C = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{{A_x}}&{{A_y}}&{{A_z}} \\
{{B_x}}&{{B_y}}&{{B_z}}
\end{array}} \right|$
$\Rightarrow \overrightarrow C = \hat i\left( {{A_y}{B_z} - {A_z}{B_y}} \right) + \hat j\left( {{A_z}{B_x} - {A_x}{B_z}} \right) + \hat k\left( {{A_x}{B_y} - {A_y}{B_x}} \right)$
In the above case,
$\Rightarrow \overrightarrow \tau = \overrightarrow r \times \overrightarrow F $, where
$\Rightarrow \overrightarrow r = 7\hat i + 3\hat j + \hat k$ and
$\Rightarrow \overrightarrow F = - 3\hat i + \hat j + 5\hat k$.
Using the above formulae,
$\Rightarrow \overrightarrow \tau = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
7&3&1 \\
{ - 3}&1&5
\end{array}} \right|$
$\Rightarrow \overrightarrow \tau = \hat i\left( {3 \times 5 - 1 \times 1} \right) + \hat j\left[ {1 \times \left( { - 3} \right) - 7 \times 5} \right] + \hat k\left[ {7 \times 1 - 3 \times \left( { - 3} \right)} \right]$
$\Rightarrow \overrightarrow \tau = \hat i\left( {15 - 1} \right) + \hat j\left( { - 3 - 35} \right) + \hat k\left[ {7 - \left( { - 9} \right)} \right]$
$\overrightarrow \tau = 14\hat i - 38\hat j + 16\hat k$
Hence option C is the correct answer.
Note: Vector product of any two vectors is always a vector perpendicular to the plane containing these two vectors, that is orthogonal to both the vectors though the vector may not be orthogonal to each other. The cross product of any two vectors always produces a vector quantity whereas the scalar product or dot product of any two vectors always produces a scalar quantity.
Complete step by step answer:
In the figure we can see that the force $\overrightarrow F $ is passing through point $P$ with the given coordinates. A position vector is drawn from origin $\left( O \right)$ to $P$.
The moment of Force or Torque $\left( \tau \right)$ is defined as the cross product or vector product between the position vector $\left( {\overrightarrow r } \right)$ and Force vector $\overrightarrow {\left( F \right)} $.
The vector product or cross product of two vectors is defined as a vector having magnitude equal to the product of the magnitudes of said two vectors with the sine of angle between them, and direction perpendicular to the plane containing the two vectors in accordance with right hand thumb rule.
Let’s assume that there are two vectors $\overrightarrow A $ and $\overrightarrow B $, and their cross product is $\overrightarrow C $.Then
$\Rightarrow \overrightarrow C = \overrightarrow A \times \overrightarrow B $
$\Rightarrow \overrightarrow C = AB\sin \theta \hat n$
Where the direction of $\overrightarrow C $ is given by the unit vector $\hat n$.
When the vectors are written in the form of $\hat i,\hat j,\hat k$ the cross product can be calculated as,
$\overrightarrow C = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{{A_x}}&{{A_y}}&{{A_z}} \\
{{B_x}}&{{B_y}}&{{B_z}}
\end{array}} \right|$
$\Rightarrow \overrightarrow C = \hat i\left( {{A_y}{B_z} - {A_z}{B_y}} \right) + \hat j\left( {{A_z}{B_x} - {A_x}{B_z}} \right) + \hat k\left( {{A_x}{B_y} - {A_y}{B_x}} \right)$
In the above case,
$\Rightarrow \overrightarrow \tau = \overrightarrow r \times \overrightarrow F $, where
$\Rightarrow \overrightarrow r = 7\hat i + 3\hat j + \hat k$ and
$\Rightarrow \overrightarrow F = - 3\hat i + \hat j + 5\hat k$.
Using the above formulae,
$\Rightarrow \overrightarrow \tau = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
7&3&1 \\
{ - 3}&1&5
\end{array}} \right|$
$\Rightarrow \overrightarrow \tau = \hat i\left( {3 \times 5 - 1 \times 1} \right) + \hat j\left[ {1 \times \left( { - 3} \right) - 7 \times 5} \right] + \hat k\left[ {7 \times 1 - 3 \times \left( { - 3} \right)} \right]$
$\Rightarrow \overrightarrow \tau = \hat i\left( {15 - 1} \right) + \hat j\left( { - 3 - 35} \right) + \hat k\left[ {7 - \left( { - 9} \right)} \right]$
$\overrightarrow \tau = 14\hat i - 38\hat j + 16\hat k$
Hence option C is the correct answer.
Note: Vector product of any two vectors is always a vector perpendicular to the plane containing these two vectors, that is orthogonal to both the vectors though the vector may not be orthogonal to each other. The cross product of any two vectors always produces a vector quantity whereas the scalar product or dot product of any two vectors always produces a scalar quantity.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main