Answer
Verified
113.7k+ views
Hint: A magnetometer is a device that measures the direction, strength, and change of a magnetic field at a specific location (on or near Earth, or in space). It primarily measures magnetic intensity and fields.
Formula used:
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
Here, $T$ is time period of oscillation of bar magnet, $I$ is moment of inertia of bar magnet, $M$ is magnetic moment and $B$ is magnetic field intensity of bar magnet.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
In the question, we have the magnetic moment which is reduced by $19\% $, then we have:
$M' = M - 19\% M \\$
$\Rightarrow M' = M - 0.19M \\$
$\Rightarrow M' = 0.81M$
The time period of the magnetometer after heating is given by,
$T' = 2\pi \sqrt {\dfrac{I}{{M'B}}} $
Now, substitute the obtained value of $M'$in the above formula, then:
$T' = 2\pi \sqrt {\dfrac{I}{{0.81MB}}} \\$
$\Rightarrow T' = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(2) $
To determine the new time period for the magnetometer, subtract the equation $(1)$from $(2)$, then we obtain:
$\Delta T = T' - T \\$
$\Rightarrow \Delta T = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} - 2\pi \sqrt {\dfrac{I}{{MB}}} \\$
$\Rightarrow \Delta T = 2\pi \sqrt {\dfrac{I}{{MB}}} (0.1111) \\$
From the above equation, we notice that the value of $T$ is equal to $2\pi \sqrt {\dfrac{I}{{MB}}} $.
So,
$\Delta T = T(0.1111) \\$
$\Rightarrow \dfrac{{\Delta T}}{T} = 0.1111 \\$
$\Rightarrow 11.11\% \approx 11\% $
Therefore, the new time period will increase by $11\% $.
Thus, the correct option is C.
Note: Magnetometers are used for a variety of purposes and have applications in a variety of fields. They are used in detecting submarines, locating iron deposits in various geographical areas, and detecting metals deep within the earth. These days, the magnetometers are also used in electronic gadgets such as some smartphones to receive the messages from varying magnetic fields by other nearby electromagnets.
Formula used:
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
Here, $T$ is time period of oscillation of bar magnet, $I$ is moment of inertia of bar magnet, $M$ is magnetic moment and $B$ is magnetic field intensity of bar magnet.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
In the question, we have the magnetic moment which is reduced by $19\% $, then we have:
$M' = M - 19\% M \\$
$\Rightarrow M' = M - 0.19M \\$
$\Rightarrow M' = 0.81M$
The time period of the magnetometer after heating is given by,
$T' = 2\pi \sqrt {\dfrac{I}{{M'B}}} $
Now, substitute the obtained value of $M'$in the above formula, then:
$T' = 2\pi \sqrt {\dfrac{I}{{0.81MB}}} \\$
$\Rightarrow T' = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(2) $
To determine the new time period for the magnetometer, subtract the equation $(1)$from $(2)$, then we obtain:
$\Delta T = T' - T \\$
$\Rightarrow \Delta T = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} - 2\pi \sqrt {\dfrac{I}{{MB}}} \\$
$\Rightarrow \Delta T = 2\pi \sqrt {\dfrac{I}{{MB}}} (0.1111) \\$
From the above equation, we notice that the value of $T$ is equal to $2\pi \sqrt {\dfrac{I}{{MB}}} $.
So,
$\Delta T = T(0.1111) \\$
$\Rightarrow \dfrac{{\Delta T}}{T} = 0.1111 \\$
$\Rightarrow 11.11\% \approx 11\% $
Therefore, the new time period will increase by $11\% $.
Thus, the correct option is C.
Note: Magnetometers are used for a variety of purposes and have applications in a variety of fields. They are used in detecting submarines, locating iron deposits in various geographical areas, and detecting metals deep within the earth. These days, the magnetometers are also used in electronic gadgets such as some smartphones to receive the messages from varying magnetic fields by other nearby electromagnets.
Recently Updated Pages
JEE Main Login 2025 - Step-by-Step Explanation
JEE Main 2025 Exam Date: Check Important Dates and Schedule
JEE Main 2025 City Intimation Slip: Downloading Link and Exam Centres
JEE Main 2025 Application Form Session 1 Out - Apply Now
JEE Main 2025 Registration Ends Today: Apply Now for January Session
JEE Main OMR Sheet 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking