
The magnet of a vibration magnetometer is heated so as to reduce its magnetic moment by $19\% $. By doing this the periodic time of the magnetometer will:
A. Increase by $19\% $
B. Decrease by $19\% $
C. Increase by $11\% $
D. Decrease by $21\% $
Answer
127.8k+ views
Hint: A magnetometer is a device that measures the direction, strength, and change of a magnetic field at a specific location (on or near Earth, or in space). It primarily measures magnetic intensity and fields.
Formula used:
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
Here, $T$ is time period of oscillation of bar magnet, $I$ is moment of inertia of bar magnet, $M$ is magnetic moment and $B$ is magnetic field intensity of bar magnet.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
In the question, we have the magnetic moment which is reduced by $19\% $, then we have:
$M' = M - 19\% M \\$
$\Rightarrow M' = M - 0.19M \\$
$\Rightarrow M' = 0.81M$
The time period of the magnetometer after heating is given by,
$T' = 2\pi \sqrt {\dfrac{I}{{M'B}}} $
Now, substitute the obtained value of $M'$in the above formula, then:
$T' = 2\pi \sqrt {\dfrac{I}{{0.81MB}}} \\$
$\Rightarrow T' = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(2) $
To determine the new time period for the magnetometer, subtract the equation $(1)$from $(2)$, then we obtain:
$\Delta T = T' - T \\$
$\Rightarrow \Delta T = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} - 2\pi \sqrt {\dfrac{I}{{MB}}} \\$
$\Rightarrow \Delta T = 2\pi \sqrt {\dfrac{I}{{MB}}} (0.1111) \\$
From the above equation, we notice that the value of $T$ is equal to $2\pi \sqrt {\dfrac{I}{{MB}}} $.
So,
$\Delta T = T(0.1111) \\$
$\Rightarrow \dfrac{{\Delta T}}{T} = 0.1111 \\$
$\Rightarrow 11.11\% \approx 11\% $
Therefore, the new time period will increase by $11\% $.
Thus, the correct option is C.
Note: Magnetometers are used for a variety of purposes and have applications in a variety of fields. They are used in detecting submarines, locating iron deposits in various geographical areas, and detecting metals deep within the earth. These days, the magnetometers are also used in electronic gadgets such as some smartphones to receive the messages from varying magnetic fields by other nearby electromagnets.
Formula used:
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
Here, $T$ is time period of oscillation of bar magnet, $I$ is moment of inertia of bar magnet, $M$ is magnetic moment and $B$ is magnetic field intensity of bar magnet.
Complete step by step solution:
In order for the model to be true, the net force exerted on the object at the pendulum's end must be commensurate to the displacement. As we know, the motion of a simple pendulum may be described by the basic harmonic motion and simple harmonic motion can also be used to describe molecular vibration.
The time period of the magnetometer before heating is given by,
$T = 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(1)$
In the question, we have the magnetic moment which is reduced by $19\% $, then we have:
$M' = M - 19\% M \\$
$\Rightarrow M' = M - 0.19M \\$
$\Rightarrow M' = 0.81M$
The time period of the magnetometer after heating is given by,
$T' = 2\pi \sqrt {\dfrac{I}{{M'B}}} $
Now, substitute the obtained value of $M'$in the above formula, then:
$T' = 2\pi \sqrt {\dfrac{I}{{0.81MB}}} \\$
$\Rightarrow T' = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} \,\,\,\,\,\,....(2) $
To determine the new time period for the magnetometer, subtract the equation $(1)$from $(2)$, then we obtain:
$\Delta T = T' - T \\$
$\Rightarrow \Delta T = \dfrac{1}{{0.9}} \times 2\pi \sqrt {\dfrac{I}{{MB}}} - 2\pi \sqrt {\dfrac{I}{{MB}}} \\$
$\Rightarrow \Delta T = 2\pi \sqrt {\dfrac{I}{{MB}}} (0.1111) \\$
From the above equation, we notice that the value of $T$ is equal to $2\pi \sqrt {\dfrac{I}{{MB}}} $.
So,
$\Delta T = T(0.1111) \\$
$\Rightarrow \dfrac{{\Delta T}}{T} = 0.1111 \\$
$\Rightarrow 11.11\% \approx 11\% $
Therefore, the new time period will increase by $11\% $.
Thus, the correct option is C.
Note: Magnetometers are used for a variety of purposes and have applications in a variety of fields. They are used in detecting submarines, locating iron deposits in various geographical areas, and detecting metals deep within the earth. These days, the magnetometers are also used in electronic gadgets such as some smartphones to receive the messages from varying magnetic fields by other nearby electromagnets.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

Common Ion Effect and Its Application for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Least distance of distant vision of a long sighted class 12 physics JEE_Main

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main Marks Vs Percentile 2025: Calculate Percentile Based on Marks

Biography of Chhatrapati Shivaji Maharaj
