The magnitude of atmospheric pressure is equal to the pressure exerted by a:
(A) $76mm$ tall column of mercury
(B) $760mm$ tall column of water
(C) $76cm$ tall column of mercury
(D) $760cm$ tall column of mercury
Answer
Verified
122.7k+ views
Hint: Calculate the pressure for each of the given heights of the mercury column and then tally it with the standard pressure of the atmosphere.
Formula used: The formula used for calculating the atmospheric pressure is $p = \rho gh$; where $p$is the pressure, $\rho $is the density of mercury and $h$is the height of the mercury column.
For calculation purposes we have used, $\rho = 13600kg{m^{ - 3}}$ and $1mb = 100N{m^{ - 2}}$.
Complete step by step answer: For solving the given question, we first need to know what is the magnitude of the atmospheric pressure.
The magnitude of atmospheric pressure can be represented in different units. They are listed as follows:
(A) $1013.25 \times {10^3}dynesc{m^{ - 2}}$
(B) $1013.25millibars$
(C) $1013.25hPa$
(D) $101.325kPa$
All the standard devices that are used to measure the atmospheric pressure make use of mercury to make the pressure measurements. This is because expansion and contraction of mercury occurs evenly with changes in temperature and pressure. Another important reason for using mercury is that it is the only metal that is in liquid state at room temperature.
So, it is quite clear from the above discussion that water cannot be used for pressure measurement and hence option$(2)$is not appropriate.
Now, in the other three options we have three given values of the mercury column height. So, to check for the correct option we have to calculate the resultant pressure values for each of the given values. To calculate pressure, we use:
$p = \rho gh$ $ \to eqn.1$; where all the terms have the physical meanings as stated above.
When $h = 76mm = 0.076m$, we have:
$p = \left( {13600 \times 9.8 \times 0.076} \right)N{m^{ - 2}} = 10129.28N{m^{ - 2}} = 101.2928mb$
The obtained value is not equal to standard atmospheric pressure, so option $(1)$is incorrect.
When $h = 76cm = 0.76m$, we have:
$p = \left( {13600 \times 9.8 \times 0.76} \right)N{m^{ - 2}} = 101292.8N{m^{ - 2}} = 1012.928mb \approx 1013mb$
The obtained value is almost equal to standard atmospheric pressure, so option $(3)$is correct.
When $h = 760cm = 76m$,we have
$p = \left( {13600 \times 9.8 \times 76} \right)N{m^{ - 2}} = 10129280N{m^{ - 2}} = 10129.28mb$
The obtained value is not equal to standard atmospheric pressure, so option $(4)$is incorrect.
Note:
Here, the formula used, i.e., $p = \rho gh$ comes from the definition of pressure as we define pressure as the ratio of force per unit area.
Formula used: The formula used for calculating the atmospheric pressure is $p = \rho gh$; where $p$is the pressure, $\rho $is the density of mercury and $h$is the height of the mercury column.
For calculation purposes we have used, $\rho = 13600kg{m^{ - 3}}$ and $1mb = 100N{m^{ - 2}}$.
Complete step by step answer: For solving the given question, we first need to know what is the magnitude of the atmospheric pressure.
The magnitude of atmospheric pressure can be represented in different units. They are listed as follows:
(A) $1013.25 \times {10^3}dynesc{m^{ - 2}}$
(B) $1013.25millibars$
(C) $1013.25hPa$
(D) $101.325kPa$
All the standard devices that are used to measure the atmospheric pressure make use of mercury to make the pressure measurements. This is because expansion and contraction of mercury occurs evenly with changes in temperature and pressure. Another important reason for using mercury is that it is the only metal that is in liquid state at room temperature.
So, it is quite clear from the above discussion that water cannot be used for pressure measurement and hence option$(2)$is not appropriate.
Now, in the other three options we have three given values of the mercury column height. So, to check for the correct option we have to calculate the resultant pressure values for each of the given values. To calculate pressure, we use:
$p = \rho gh$ $ \to eqn.1$; where all the terms have the physical meanings as stated above.
When $h = 76mm = 0.076m$, we have:
$p = \left( {13600 \times 9.8 \times 0.076} \right)N{m^{ - 2}} = 10129.28N{m^{ - 2}} = 101.2928mb$
The obtained value is not equal to standard atmospheric pressure, so option $(1)$is incorrect.
When $h = 76cm = 0.76m$, we have:
$p = \left( {13600 \times 9.8 \times 0.76} \right)N{m^{ - 2}} = 101292.8N{m^{ - 2}} = 1012.928mb \approx 1013mb$
The obtained value is almost equal to standard atmospheric pressure, so option $(3)$is correct.
When $h = 760cm = 76m$,we have
$p = \left( {13600 \times 9.8 \times 76} \right)N{m^{ - 2}} = 10129280N{m^{ - 2}} = 10129.28mb$
The obtained value is not equal to standard atmospheric pressure, so option $(4)$is incorrect.
Note:
Here, the formula used, i.e., $p = \rho gh$ comes from the definition of pressure as we define pressure as the ratio of force per unit area.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line