
The maximum and minimum distances of a comet from the sun are \[V=3.0\times {{10}^{3}}m{{s}^{-1}}\] m and $8.0\times {{10}^{10}}$m respectively. If the speed of the comet at the nearest point is \[6\times {{10}^{4}}m{{s}^{-1}}\], the speed at the farthest point is:
a. \[1.5\times {{10}^{3}}m{{s}^{-1}}\]
b. \[4.5\times {{10}^{3}}m{{s}^{-1}}\]
c. \[3.0\times {{10}^{3}}m{{s}^{-1}}\]
d. \[6.0\times {{10}^{3}}m{{s}^{-1}}\]
Answer
216.3k+ views
Hint: As this problem comes under mechanics, it is possible to solve it if you know conservation laws. Here, conservation of angular momentum is used to solve the speed of a comet at the farthest distance. Conservation of angular momentum says that total angular momentum at any point remains constant.
Formula used:
\[V=\frac{rv}{R}\]
Where,
V=speed of comet at farthest distance.
R=maximum distance.
r=minimum distance.
Complete answer:
The orbit around the sun is elliptical. Let ‘r’ denote the minimum distance and ‘v’ denote the speed of the comet at the minimum distance. Let ‘R’ be the maximum distance and ‘V’ be the speed of the comet at farthest distance from sun and ‘m’ be the mass of the comet
From the conservation of angular momentum
Angular momentum at nearest point = Angular momentum at farthest point
\[mvr=mVR\]
Therefore, speed of comet at farthest distance is
\[V=\frac{rv}{R}\]
That is,
\[V=\frac{8\times {{10}^{10}}\times 6\times {{10}^{4}}}{1.6\times {{10}^{12}}}\]
On calculating we get the speed of comet as
\[V=3.0\times {{10}^{3}}m{{s}^{-1}}\]
Therefore, answer is (c).
Note: Here Kepler’s first law and second law is used. Kepler’s first law states that the path of revolution of the planet around the sun is elliptical. That is every revolving object has a point closer to the sun and farther to the sun. Kepler’s second law states that the radius vector sweeps equal area in equal intervals of time. That is for conserving angular momentum the speed of the planet nearer to the sun is high and at a point farther from the sun the speed of the planet is low. So this can be used to check your answer whether the answer we got is right or wrong.
Formula used:
\[V=\frac{rv}{R}\]
Where,
V=speed of comet at farthest distance.
R=maximum distance.
r=minimum distance.
Complete answer:
The orbit around the sun is elliptical. Let ‘r’ denote the minimum distance and ‘v’ denote the speed of the comet at the minimum distance. Let ‘R’ be the maximum distance and ‘V’ be the speed of the comet at farthest distance from sun and ‘m’ be the mass of the comet
From the conservation of angular momentum
Angular momentum at nearest point = Angular momentum at farthest point
\[mvr=mVR\]
Therefore, speed of comet at farthest distance is
\[V=\frac{rv}{R}\]
That is,
\[V=\frac{8\times {{10}^{10}}\times 6\times {{10}^{4}}}{1.6\times {{10}^{12}}}\]
On calculating we get the speed of comet as
\[V=3.0\times {{10}^{3}}m{{s}^{-1}}\]
Therefore, answer is (c).
Note: Here Kepler’s first law and second law is used. Kepler’s first law states that the path of revolution of the planet around the sun is elliptical. That is every revolving object has a point closer to the sun and farther to the sun. Kepler’s second law states that the radius vector sweeps equal area in equal intervals of time. That is for conserving angular momentum the speed of the planet nearer to the sun is high and at a point farther from the sun the speed of the planet is low. So this can be used to check your answer whether the answer we got is right or wrong.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

