
The maximum number of equivalence relations on the set $A=\left\{ 1,2,3 \right\}$ is
(a) $1$
(b) $2$
(c) $3$
(d) $5$
Answer
524k+ views
Hint: Will find all the possible relations that are equivalence i.e. we will find all the possible relations that are symmetric, reflexive and transitive at the same time.
Before finding the maximum number of equivalence relation on the set $A=\left\{ 1,2,3
\right\}$, we will first discuss what do we mean by the equivalence relation?
A relation is said to be an equivalence relation if it is,
1) Reflexive - A relation $R$ on a set $A$ is said to be reflexive if $\left( a,a \right)$ is there in
relation $R$ $\forall a\in A$.
2) Symmetric – A relation $R$ on a set $A$ is said to be symmetric when, if $\left( a,b \right)$ is
there in the relation, then $\left( b,a \right)$ should also be there in the relation for $a,b\in A$.
3) Transitive – A relation $R$ on a set $A$ is said to be transitive when, if $\left( a,b \right)$ and
$\left( b,c \right)$ are there in the relation, then $\left( a,c \right)$ should also be there in the
relation for $a,b,c\in A$.
For a relation which is defined on the set $A=\left\{ 1,2,3 \right\}$, all possible relations that are
equivalence are,
1) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right) \right\}$
2) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}$
3) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,3 \right),\left( 3,1 \right) \right\}$
4) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
5) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right),\left( 1,3
\right),\left( 3,1 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
All the possible relations on the set $A=\left\{ 1,2,3 \right\}$ that are equivalence are made in the
above list. So, the maximum number of equivalence relations that are possible on the set $A=\left\{
1,2,3 \right\}$ is equal to 5.
Therefore option (d) is correct answer
Note: There is a possibility that one may make mistakes while writing all the possible equivalence relation that can be formed on the given set $A$. To avoid such mistakes, one can follow these steps. First write down the reflexive relation. Then start writing down the relations that are both reflexive as well as symmetric taking two numbers from set $A$ at a single time. Finally, write down the union relation of all the relations that are generated from the second step.
Before finding the maximum number of equivalence relation on the set $A=\left\{ 1,2,3
\right\}$, we will first discuss what do we mean by the equivalence relation?
A relation is said to be an equivalence relation if it is,
1) Reflexive - A relation $R$ on a set $A$ is said to be reflexive if $\left( a,a \right)$ is there in
relation $R$ $\forall a\in A$.
2) Symmetric – A relation $R$ on a set $A$ is said to be symmetric when, if $\left( a,b \right)$ is
there in the relation, then $\left( b,a \right)$ should also be there in the relation for $a,b\in A$.
3) Transitive – A relation $R$ on a set $A$ is said to be transitive when, if $\left( a,b \right)$ and
$\left( b,c \right)$ are there in the relation, then $\left( a,c \right)$ should also be there in the
relation for $a,b,c\in A$.
For a relation which is defined on the set $A=\left\{ 1,2,3 \right\}$, all possible relations that are
equivalence are,
1) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right) \right\}$
2) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}$
3) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,3 \right),\left( 3,1 \right) \right\}$
4) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
5) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right),\left( 1,3
\right),\left( 3,1 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
All the possible relations on the set $A=\left\{ 1,2,3 \right\}$ that are equivalence are made in the
above list. So, the maximum number of equivalence relations that are possible on the set $A=\left\{
1,2,3 \right\}$ is equal to 5.
Therefore option (d) is correct answer
Note: There is a possibility that one may make mistakes while writing all the possible equivalence relation that can be formed on the given set $A$. To avoid such mistakes, one can follow these steps. First write down the reflexive relation. Then start writing down the relations that are both reflexive as well as symmetric taking two numbers from set $A$ at a single time. Finally, write down the union relation of all the relations that are generated from the second step.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

