![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
The minimum magnetic dipole moment of an electron in the hydrogen atom is
A) $\dfrac{{eh}}{{2\pi m}}$
B) $\dfrac{{eh}}{{4\pi m}}$
C) $\dfrac{{eh}}{{\pi m}}$
D) $0$
Answer
125.1k+ views
Hint: The electron revolving around the nucleus in an orbit of radius $r$ generates a current $i$ and a current carrying loop produces a magnetic dipole moment.
Formula Used:
1. Current $i$ generated by the revolving electron is given by, $i = \dfrac{e}{T}$ where $e$ is the charge of the electron and $T = \dfrac{{2\pi }}{\omega }$ is the time period ($\omega $is the angular velocity).
2. Relation between linear velocity $v$ and angular velocity$\omega $ with $r$ as the radius is given by,
3. Magnetic dipole moment is $\mu = iA$ ,where $i$ is the current flowing through a loop of area $A$ .
Angular momentum of an electron of mass $m$ moving with a velocity $v$along a circular orbit of radius $r$ is $L = mvr$ .
4. From Bohr’s postulate we have, $mvr = \dfrac{{nh}}{{2\pi }}$ , $n$ is the principal quantum number and $h$ is the Planck's constant.
Complete step by step answer:
Step1: Sketch a schematic diagram of the electron in the hydrogen atom.
Step 2: Express the relation for the current generated by the revolving electron.
Substitute $T = \dfrac{{2\pi }}{\omega }$ in the above equation to get, $i = \dfrac{{e\omega }}{{2\pi }}$ .
Step 3: Express the relation for magnetic dipole moment of the electron in the hydrogen atom.
Magnetic dipole moment $\mu $ of a current carrying loop of area $A$ is given by, $\mu = iA$ .
Step 4: Express the magnetic dipole moment $\mu $ in terms of the angular momentum $L = mvr$ .
Step 5: Use Bohr’s postulate about angular momentum to obtain the minimum magnetic dipole moment of the electron in the hydrogen atom.
Note: : It is important to evaluate the options in which quantities the final answer is expressed and hence then manipulate equations to reach to the final answer in the quantities displayed in the option.
Formula Used:
1. Current $i$ generated by the revolving electron is given by, $i = \dfrac{e}{T}$ where $e$ is the charge of the electron and $T = \dfrac{{2\pi }}{\omega }$ is the time period ($\omega $is the angular velocity).
2. Relation between linear velocity $v$ and angular velocity$\omega $ with $r$ as the radius is given by,
$v = r\omega $ or $\omega = \dfrac{v}{r}$ .
3. Magnetic dipole moment is $\mu = iA$ ,where $i$ is the current flowing through a loop of area $A$ .
Angular momentum of an electron of mass $m$ moving with a velocity $v$along a circular orbit of radius $r$ is $L = mvr$ .
4. From Bohr’s postulate we have, $mvr = \dfrac{{nh}}{{2\pi }}$ , $n$ is the principal quantum number and $h$ is the Planck's constant.
Complete step by step answer:
Step1: Sketch a schematic diagram of the electron in the hydrogen atom.
![](https://www.vedantu.com/question-sets/d011f590-bfc3-48ea-8f30-95191a5314132820156978990629770.png)
Step 2: Express the relation for the current generated by the revolving electron.
The electron revolving around the nucleus of the hydrogen atom is like the current flowing through a current carrying loop that encompasses an area $A$.
So, the current generated by an electron of charge $e$ revolving around the orbit of radius $r$for a time $T$with angular velocity $\omega $ is given by, $i = \dfrac{e}{T}$ .
Substitute $T = \dfrac{{2\pi }}{\omega }$ in the above equation to get, $i = \dfrac{{e\omega }}{{2\pi }}$ .
Substituting for $\omega = \dfrac{v}{r}$ in the equation for current, we get $i = \dfrac{{ev}}{{2\pi r}}$ .
Step 3: Express the relation for magnetic dipole moment of the electron in the hydrogen atom.
Magnetic dipole moment $\mu $ of a current carrying loop of area $A$ is given by, $\mu = iA$ .
The area of the orbit (or loop) along which the electron revolves is given by, $A = \pi {r^2}$as we assume the orbit to be circular.
Now substitute for $i = \dfrac{{ev}}{{2\pi r}}$ and $A = \pi {r^2}$ to obtain the magnetic dipole moment $\mu $ .
We have, $\mu = \left( {\dfrac{{ev}}{{2\pi r}}} \right)\pi {r^2}$ .
Simplifying we get,$\mu = \dfrac{{evr}}{2}$ .
Step 4: Express the magnetic dipole moment $\mu $ in terms of the angular momentum $L = mvr$ .
Angular momentum of a mass $m$ moving with a velocity $v$along a circular orbit of radius $r$ is $L = mvr$ .
i.e., $vr = \dfrac{L}{m}$ .
Substituting the above relation in the equation $\mu $ we get, $\mu = \dfrac{e}{{2m}}L$ .
Step 5: Use Bohr’s postulate about angular momentum to obtain the minimum magnetic dipole moment of the electron in the hydrogen atom.
According to Bohr’s atomic model, the angular momentum of the electron orbiting around the nucleus is quantized. The angular momentum of an electron is given by,
$L = mvr = \dfrac{{nh}}{{2\pi }}$ .
Substitute $L = \dfrac{{nh}}{{2\pi }}$ in the equation $\mu = \dfrac{e}{{2m}}L$ to obtain,
$\mu = \dfrac{e}{{2m}}\left( {\dfrac{{nh}}{{2\pi }}} \right) = \dfrac{{neh}}{{4\pi m}}$ .
For minimum magnetic dipole moment, $n = 1$ ,i.e., $\mu = \dfrac{{eh}}{{4\pi m}}$ .
Therefore, the correct option is b) $\dfrac{{eh}}{{4\pi m}}$ .
Note: : It is important to evaluate the options in which quantities the final answer is expressed and hence then manipulate equations to reach to the final answer in the quantities displayed in the option.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Circuit Switching and Packet Switching
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric field due to uniformly charged sphere class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)