The minimum number of capacitors each of \[3\mu F\] required to make a circuit with an equivalent capacitance of \[2.25\mu F\] is:
(A) 3
(B) 4
(C) 5
(D) 6
Answer
Verified
116.4k+ views
Hint Here we have to connect capacitors in series, parallel or a combination of both of them to achieve the required value. Using trial and error methods combine the capacitors in combinations of series and parallel or mixed grouping and add more if the effective capacitance does not reach the required value.
Complete step-by-step solution
Capacitance can be connected in series or parallel or both, the approach is just to hit and try.
Consider we have 4 capacitors, and we connect 3 of them in parallel. The equivalent resistance of the 3 capacitors will become:
\[
C' = {C_1} + {C_2} + {C_3} \\
C' = 3 + 3 + 3 \\
C' = 9\mu F \\
\]
Now, if we connect the 4th capacitor in series with the parallel combination of capacitors, we will get:
\[C'' = \dfrac{{C'{C_4}}}{{C' + {C_4}}}\]
\[C'' = \dfrac{{9 \times 3}}{{9 + 3}}\]
\[C'' = \dfrac{{27}}{{12}}\]
\[C'' = 2.25\mu F\]
Therefore, the correct answer is option B, which is formed by connecting 3 capacitors in parallel in remaining ones in series.
Note Keep in mind that the formula for finding equivalent value of capacitor in series is similar to connecting resistances in parallel. For identical capacitors in series ${C_{eq}} = \dfrac{C}{n}$ and in parallel ${C_{eq}} = nC$ .
Complete step-by-step solution
Capacitance can be connected in series or parallel or both, the approach is just to hit and try.
Consider we have 4 capacitors, and we connect 3 of them in parallel. The equivalent resistance of the 3 capacitors will become:
\[
C' = {C_1} + {C_2} + {C_3} \\
C' = 3 + 3 + 3 \\
C' = 9\mu F \\
\]
Now, if we connect the 4th capacitor in series with the parallel combination of capacitors, we will get:
\[C'' = \dfrac{{C'{C_4}}}{{C' + {C_4}}}\]
\[C'' = \dfrac{{9 \times 3}}{{9 + 3}}\]
\[C'' = \dfrac{{27}}{{12}}\]
\[C'' = 2.25\mu F\]
Therefore, the correct answer is option B, which is formed by connecting 3 capacitors in parallel in remaining ones in series.
Note Keep in mind that the formula for finding equivalent value of capacitor in series is similar to connecting resistances in parallel. For identical capacitors in series ${C_{eq}} = \dfrac{C}{n}$ and in parallel ${C_{eq}} = nC$ .
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025