Answer
Verified
103.8k+ views
Hint: To find out the resistivity of the semiconductor we need to find its conductivity first and then we can take its reciprocal to find out the required resistivity. While using the conductivity formula, we need to ignore the hole concentration as given in the question.
Formula used:
Conductivity of the semiconductor, $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and e is the charge on the electron.
Complete step by step answer:
We have been given the density of electrons, $n=10^{19}\; m^{-3}$ and mobility, ${\mu}_{e}=1.6\; m^2 /(V.s)$.
So, to find the conductivity we need to use the formula $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and $e=1.6 \times 10^{-19}$ C is the charge on the electron.
According to the question, the semiconductor is of n-type, so contribution of holes will be ignored.
So, conductivity $\sigma = n{\mu}_{e}e=10^{19}\times 1.6 \times 1.6 \times 10^{-19}\; (\Omega m)^{-1}=2.56\; (\Omega m)^{-1}$
Now, we know that resistivity, $\rho =\dfrac{1}{\sigma}$
Therefore. $\rho =\dfrac{1}{2.56}\; \Omega m=0.4\; \Omega m$
Hence, option b is the correct answer.
Note: There will be certain resistivity that will be provided by the holes too and we should take care until and unless it has been mentioned to ignore its effect, it effect should be considered by calculating the resistivity of the semiconductor.
Formula used:
Conductivity of the semiconductor, $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and e is the charge on the electron.
Complete step by step answer:
We have been given the density of electrons, $n=10^{19}\; m^{-3}$ and mobility, ${\mu}_{e}=1.6\; m^2 /(V.s)$.
So, to find the conductivity we need to use the formula $\sigma=(p{\mu}_{h}+n{\mu}_{e})e$, where p and n are the electron and hole density respectively, ${\mu}_{h}$ and ${\mu}_{e}$ are the mobility of holes and electrons and $e=1.6 \times 10^{-19}$ C is the charge on the electron.
According to the question, the semiconductor is of n-type, so contribution of holes will be ignored.
So, conductivity $\sigma = n{\mu}_{e}e=10^{19}\times 1.6 \times 1.6 \times 10^{-19}\; (\Omega m)^{-1}=2.56\; (\Omega m)^{-1}$
Now, we know that resistivity, $\rho =\dfrac{1}{\sigma}$
Therefore. $\rho =\dfrac{1}{2.56}\; \Omega m=0.4\; \Omega m$
Hence, option b is the correct answer.
Note: There will be certain resistivity that will be provided by the holes too and we should take care until and unless it has been mentioned to ignore its effect, it effect should be considered by calculating the resistivity of the semiconductor.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
A physical quantity which has a direction A Must be class 11 physics JEE_Main
For pure water A pH increases while pOH decreases with class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main