The molar mass of iodine is 127 g/mol. Hen sound at frequency 1000 Hz is introduced to a tube of iodine gas at 400 K, an internal acoustic standing wave is set up with nodes separated by 9.57 cm. What is $\gamma$ for the gas?
Answer
Verified
116.7k+ views
Hint: The distance between two consecutive nodes and an antinode in a standing wave is represented as the half of the wavelength of the waves produced.
Distance = $\dfrac{\lambda}{2}$
Where lambda is the wavelength of the wave produced.
Complete step by step solution:
Mass of iodine = 127g/mol
T=400K
Distance between two node is= \[\dfrac{\lambda }{2} = 9.57 \times {10^{ - 2}}\]
\[\Rightarrow \dfrac{\lambda }{2} = 9.57 \times {10^{ - 2}}\\ \Rightarrow \lambda = 19.04 \times {10^{ - 2}}\\ \Rightarrow {{\rm{V}}_{{\rm{sound}}}} = f\lambda \\ \Rightarrow {{\rm{V}}_{{\rm{sound}}}} = 1000 \times 19.04 \times {10^{ - 2}}\\\therefore {{\rm{V}}_{{\rm{sound}}}} = 190.4m/\sec \\{\rm{also V = }}\sqrt {\dfrac{{{\rm{\gamma RT}}}}{{\rm{M}}}} \\ \Rightarrow \sqrt {\dfrac{{{\rm{\gamma RT}}}}{{\rm{M}}}} = 190.4\\{{\rm{V}}_{{\rm{sound}}}}{\rm{ = }}\dfrac{{{{{\rm{(190}}{\rm{.4)}}}^{\rm{2}}}{\rm{ \times 127 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}}}{{{\rm{8}}{\rm{.31 \times 400}}}}\\{\rm{\gamma = 0}}{\rm{.7}}\\\\\]
Additional Information:
Nodes and antinodes are known to form static waves. In given static waves, the distance between any two given continuous nodes is half the wavelength. The approximate distance between the node and the immediate next antinode is actually a quarter of the given wavelength.
In other words, the total distance or difference between two continuous nodes and an antinode in a given current waveform is usually represented as half the length of the wave produced.
The formula is Distance= $\dfrac{\lambda}{2}$
Where lambda is the wavelength. It is also to be known that the standing wave varies in distance proportionately to its wavelength with the displacement being zero always
Note: Nodes and antinodes are formed in static waves. In static waves, the distance between two continuous nodes (anti-nodes) is one half wavelength. Thus, the distance between a node and the immediate next antinode is a quarter of a wavelength. In the standing wave distance varies according to wavelength but the displacement is always zero.
Distance = $\dfrac{\lambda}{2}$
Where lambda is the wavelength of the wave produced.
Complete step by step solution:
Mass of iodine = 127g/mol
T=400K
Distance between two node is= \[\dfrac{\lambda }{2} = 9.57 \times {10^{ - 2}}\]
\[\Rightarrow \dfrac{\lambda }{2} = 9.57 \times {10^{ - 2}}\\ \Rightarrow \lambda = 19.04 \times {10^{ - 2}}\\ \Rightarrow {{\rm{V}}_{{\rm{sound}}}} = f\lambda \\ \Rightarrow {{\rm{V}}_{{\rm{sound}}}} = 1000 \times 19.04 \times {10^{ - 2}}\\\therefore {{\rm{V}}_{{\rm{sound}}}} = 190.4m/\sec \\{\rm{also V = }}\sqrt {\dfrac{{{\rm{\gamma RT}}}}{{\rm{M}}}} \\ \Rightarrow \sqrt {\dfrac{{{\rm{\gamma RT}}}}{{\rm{M}}}} = 190.4\\{{\rm{V}}_{{\rm{sound}}}}{\rm{ = }}\dfrac{{{{{\rm{(190}}{\rm{.4)}}}^{\rm{2}}}{\rm{ \times 127 \times 1}}{{\rm{0}}^{{\rm{ - 3}}}}}}{{{\rm{8}}{\rm{.31 \times 400}}}}\\{\rm{\gamma = 0}}{\rm{.7}}\\\\\]
Additional Information:
Nodes and antinodes are known to form static waves. In given static waves, the distance between any two given continuous nodes is half the wavelength. The approximate distance between the node and the immediate next antinode is actually a quarter of the given wavelength.
In other words, the total distance or difference between two continuous nodes and an antinode in a given current waveform is usually represented as half the length of the wave produced.
The formula is Distance= $\dfrac{\lambda}{2}$
Where lambda is the wavelength. It is also to be known that the standing wave varies in distance proportionately to its wavelength with the displacement being zero always
Note: Nodes and antinodes are formed in static waves. In static waves, the distance between two continuous nodes (anti-nodes) is one half wavelength. Thus, the distance between a node and the immediate next antinode is a quarter of a wavelength. In the standing wave distance varies according to wavelength but the displacement is always zero.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids