
The molar specific heat of a gas as given from the kinetic theory is $\dfrac{5}{2}R$. If it is not specified whether it is ${C_p}$ or ${C_v}$, one could conclude that the molecules of the gas-
(A) Are definitely monoatomic
(B) Are definitely rigid diatomic
(C) Are definitely non-rigid diatomic
(D) Can be monatomic or rigid diatomic
Answer
232.8k+ views
Hint: The relation between the molar specific heat of a gas at constant volume(${C_v}$) and at constant pressure(${C_p}$) is given by- ${C_p} = {C_v} + R$, Where R is the gas constant. The values corresponding to both monoatomic and diatomic gases can be calculated and compared to give the answer.
Step by step answer
According to the equipartition theorem, for a gas, each degree of freedom contributes internal energy equal to $\dfrac{1}{2}RT$ per mole. Thus,
For a monatomic gas, degree of freedom, $f = 3$
The internal energy can be given by, $U = 3 \times \dfrac{1}{2}RT = \dfrac{3}{2}RT$
The molar specific heat at constant volume, ${C_v}$ is the defined as the change in internal energy per unit temperature so can be written as, ${C_v} = \dfrac{3}{2}R$
Now, the relation between ${C_p}$ and ${C_v}$ is given by-
${C_p} - {C_v} = R$
${C_p} = {C_v} + R$
${C_p}$for a monatomic gas is given by,
${C_p} = \dfrac{3}{2}R + R$
${C_p} = \dfrac{5}{2}R$
Now a diatomic gas can have two extra degrees of freedom due to rotation along two independent axes. This makes the total degrees of freedom for a linear diatomic gas as, $f = 5$
From this we get ${C_v} = \dfrac{5}{2}R$
And the ${C_p}$ can be calculated as-
${C_p} = \dfrac{5}{2}R + R$
${C_p} = \dfrac{7}{2}R$
For a non-rigid diatomic molecule the degree of freedom is 6.
So ${C_v} = 3R$
And ${C_p} = 4R$
In monoatomic, ${C_p} = \dfrac{5}{2}R$, and in diatomic, ${C_p} = \dfrac{5}{2}R$ but in non-rigid diatomic, ${C_P} \ne {C_V} \ne \dfrac{5}{2}R$.
Since the specific heat can be both ${C_p}$ and ${C_v}$ therefore it can be a monatomic or rigid diatomic gas.
Option (D) is correct.
Note: A rigid diatomic molecule is defined as a molecule which does not possess any vibrational energy. A non-rigid diatomic molecule on the other hand has vibrational energy and thus has an extra degree of freedom, making the total number of degrees of freedom as 6.
Step by step answer
According to the equipartition theorem, for a gas, each degree of freedom contributes internal energy equal to $\dfrac{1}{2}RT$ per mole. Thus,
For a monatomic gas, degree of freedom, $f = 3$
The internal energy can be given by, $U = 3 \times \dfrac{1}{2}RT = \dfrac{3}{2}RT$
The molar specific heat at constant volume, ${C_v}$ is the defined as the change in internal energy per unit temperature so can be written as, ${C_v} = \dfrac{3}{2}R$
Now, the relation between ${C_p}$ and ${C_v}$ is given by-
${C_p} - {C_v} = R$
${C_p} = {C_v} + R$
${C_p}$for a monatomic gas is given by,
${C_p} = \dfrac{3}{2}R + R$
${C_p} = \dfrac{5}{2}R$
Now a diatomic gas can have two extra degrees of freedom due to rotation along two independent axes. This makes the total degrees of freedom for a linear diatomic gas as, $f = 5$
From this we get ${C_v} = \dfrac{5}{2}R$
And the ${C_p}$ can be calculated as-
${C_p} = \dfrac{5}{2}R + R$
${C_p} = \dfrac{7}{2}R$
For a non-rigid diatomic molecule the degree of freedom is 6.
So ${C_v} = 3R$
And ${C_p} = 4R$
In monoatomic, ${C_p} = \dfrac{5}{2}R$, and in diatomic, ${C_p} = \dfrac{5}{2}R$ but in non-rigid diatomic, ${C_P} \ne {C_V} \ne \dfrac{5}{2}R$.
Since the specific heat can be both ${C_p}$ and ${C_v}$ therefore it can be a monatomic or rigid diatomic gas.
Option (D) is correct.
Note: A rigid diatomic molecule is defined as a molecule which does not possess any vibrational energy. A non-rigid diatomic molecule on the other hand has vibrational energy and thus has an extra degree of freedom, making the total number of degrees of freedom as 6.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

