The moment of inertia of a rectangular lamina of mass 'm', length ' l ' and width ‘b' about an axis passing through its centre of mass, perpendicular to its diagonal and lies in the plane.
A) $\text{m}\left[ \dfrac{{{\ell }^{2}}+{{\text{b}}^{2}}}{12} \right]$
B) $\dfrac{\mathrm{m}}{12}\left[\dfrac{\ell^{4}+\mathrm{b}^{4}}{\ell^{2}+\mathrm{b}^{2}}\right]$
C) $\dfrac{\mathrm{m}}{6}\left[\dfrac{\ell^{4}+\mathrm{b}^{4}}{\ell^{2}+\mathrm{b}^{2}}\right]$
D) $\text{None of these}$
Answer
Verified
414.5k+ views
Hint: Moment of Inertia is the name given to rotational inertia, the rotational analog of mass for straight movement. It shows up in the connections for the dynamics of rotational movement. The moment of inertia must be determined regarding a picked pivot of revolution. For a point mass, the moment of inertia is only the mass multiplied by the square of perpendicular distance to the rotational axis, $I=m{{r}^{2}}$. That point mass relationship turns into the reason for all different moments of inertia since any item can be developed from an assortment of point masses.
Complete step by step answer:
To solve the given question, we must apply the concept of the moment of inertia.
We consider the given diagram to answer the given question,
We can calculate the differential area as,
$\Rightarrow d A=b d x$
$\Rightarrow \sigma =\dfrac{M}{l\times b}$
Therefore,
$\Rightarrow dM=\sigma dA\Rightarrow \dfrac{Mdx}{lb}$
Integrating the values, we get,
$\Rightarrow \int{d}{{I}_{y}}=\int\limits_{-\dfrac{l}{2}}^{\dfrac{l}{2}}{d}M\times {{x}^{2}}$
$\Rightarrow {{I}_{y}}=\dfrac{M}{l}\int\limits_{-\dfrac{l}{2}}^{\dfrac{l}{2}}{{{x}^{2}}}dx$
$\Rightarrow \dfrac{M{{l}^{2}}}{12}$
Similarly, ${{I}_{y}}=\dfrac{M{{b}^{2}}}{12}$
$\Rightarrow {{I}_{z}}={{I}_{x}}+{{I}_{y}}=\dfrac{M{{b}^{2}}}{12}+\dfrac{M{{l}^{2}}}{12}$
$\Rightarrow M\left( \dfrac{{{l}^{2}}+{{b}^{2}}}{12} \right)$
Therefore, the correct answer is Option A.
Note: Moment of Inertia is characterized as for a particular rotation axis. The moment of inertia of a point mass with deference toward a pivot is characterized as the result of the mass multiplied by the distance from the axis squared. The moment of inertia of any all-inclusive article is developed from that essential definition. The overall type existing apart from the moment of inertia includes an integral.
Complete step by step answer:
To solve the given question, we must apply the concept of the moment of inertia.
We consider the given diagram to answer the given question,
We can calculate the differential area as,
$\Rightarrow d A=b d x$
$\Rightarrow \sigma =\dfrac{M}{l\times b}$
Therefore,
$\Rightarrow dM=\sigma dA\Rightarrow \dfrac{Mdx}{lb}$
Integrating the values, we get,
$\Rightarrow \int{d}{{I}_{y}}=\int\limits_{-\dfrac{l}{2}}^{\dfrac{l}{2}}{d}M\times {{x}^{2}}$
$\Rightarrow {{I}_{y}}=\dfrac{M}{l}\int\limits_{-\dfrac{l}{2}}^{\dfrac{l}{2}}{{{x}^{2}}}dx$
$\Rightarrow \dfrac{M{{l}^{2}}}{12}$
Similarly, ${{I}_{y}}=\dfrac{M{{b}^{2}}}{12}$
$\Rightarrow {{I}_{z}}={{I}_{x}}+{{I}_{y}}=\dfrac{M{{b}^{2}}}{12}+\dfrac{M{{l}^{2}}}{12}$
$\Rightarrow M\left( \dfrac{{{l}^{2}}+{{b}^{2}}}{12} \right)$
Therefore, the correct answer is Option A.
Note: Moment of Inertia is characterized as for a particular rotation axis. The moment of inertia of a point mass with deference toward a pivot is characterized as the result of the mass multiplied by the distance from the axis squared. The moment of inertia of any all-inclusive article is developed from that essential definition. The overall type existing apart from the moment of inertia includes an integral.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation