
The motion of a planet around the sun in an elliptical orbit is shown in the following figure. Sun is situated in one focus. The shaded areas are equal. If the planet takes time ${t_1}$ and ${t_2}$ in moving from $A$ to $B$ and from $C$ to $D$ respectively then
(A) ${t_1} > {t_2}$
(B) ${t_1} < {t_2}$
(C) ${t_1} = {t_2}$
(D) information incomplete
Answer
131.4k+ views
Hint: Kepler’s law is applicable for the motion of the planet which moves around the centre of gravity, sun. use this law to solve this problem. Rearranging the Kepler’s law and substituting both the areas are the same provides the relation between the time taken.
Useful formula:
The formula of the Kepler’s law of planetary motion is given by
$\dfrac{{dA}}{{dt}} = {\text{constant}}$
${t_1} = {t_2}$Where $dA$ is the change in the area and $dt$ is the change in the time taken to cover the area.
Complete step by step solution:
It is given that the Sun is the centre of the focus for the Earth to rotate in the elliptical path. From the given diagram and the given data, the shaded areas of $AB$ and $CD$ are the same. The time taken to cover the area of $AB$ is ${t_1}$ and the time taken to cover the area of $CD$ is ${t_2}$ .
Let us consider Kepler's law of the area of planetary motion. This law states that the line joining the sun and the planet will cover an equal area in the certain interval of time. This can also be said as the area velocity is constant.
$
\dfrac{{dA}}{{dt}} = {\text{constant}} \\
\dfrac{{{A_1}}}{{{t_1}}} = \dfrac{{{A_2}}}{{{t_2}}} \\
{t_1} = \dfrac{{{A_1}}}{{{A_2}}}{t_2} \\
$
Since the areas covered by both the lines are same, then ${A_1} = {A_2}$
${t_1} = {t_2}$
Hence the time taken will also be equal for both the areas.
Thus the option (C) is correct.
Note: Let us see the derivation of the Kepler’s law used in the above solution. It is known that the $L = \dfrac{{mA}}{t}$ , bringing $m$ to left hand side of the equation, we get, $\dfrac{L}{m} = \dfrac{A}{t}$ . Since the sun is the centre of gravity, the angular momentum is constant. The mass is also constant. So the $LHS$ is also constant. Hence $\dfrac{A}{t} = {\text{constant}}$ .
Useful formula:
The formula of the Kepler’s law of planetary motion is given by
$\dfrac{{dA}}{{dt}} = {\text{constant}}$
${t_1} = {t_2}$Where $dA$ is the change in the area and $dt$ is the change in the time taken to cover the area.
Complete step by step solution:
It is given that the Sun is the centre of the focus for the Earth to rotate in the elliptical path. From the given diagram and the given data, the shaded areas of $AB$ and $CD$ are the same. The time taken to cover the area of $AB$ is ${t_1}$ and the time taken to cover the area of $CD$ is ${t_2}$ .
Let us consider Kepler's law of the area of planetary motion. This law states that the line joining the sun and the planet will cover an equal area in the certain interval of time. This can also be said as the area velocity is constant.
$
\dfrac{{dA}}{{dt}} = {\text{constant}} \\
\dfrac{{{A_1}}}{{{t_1}}} = \dfrac{{{A_2}}}{{{t_2}}} \\
{t_1} = \dfrac{{{A_1}}}{{{A_2}}}{t_2} \\
$
Since the areas covered by both the lines are same, then ${A_1} = {A_2}$
${t_1} = {t_2}$
Hence the time taken will also be equal for both the areas.
Thus the option (C) is correct.
Note: Let us see the derivation of the Kepler’s law used in the above solution. It is known that the $L = \dfrac{{mA}}{t}$ , bringing $m$ to left hand side of the equation, we get, $\dfrac{L}{m} = \dfrac{A}{t}$ . Since the sun is the centre of gravity, the angular momentum is constant. The mass is also constant. So the $LHS$ is also constant. Hence $\dfrac{A}{t} = {\text{constant}}$ .
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
Waves Class 11 Notes: CBSE Physics Chapter 14

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter
