The number of ways in which 5 male and 2 female members of committee can be seated around a table, so that two female members are not seated by together is
A. 480
B. 600
C. 720
D. 840
Answer
Verified
125.1k+ views
Hint: We will start by fixing one male at a particular position and find the remaining number of ways of 4 members then find the number of ways where two females cannot sit together out of 5 available seats. We will use the permutation formula \[{}^n{p_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] to expand the value.
Complete step by step solution:
It is given that there are 5 male and 2 female members seated around a table such that two female members are not seated together.
Initially we have to fix up a male at a particular position.
Since the number of positions is 5, out of which one seat is fixed for one male member already, hence the remaining 4 males can be seated in 4! ways.
As no two females are seated together and if we take any two males, there is one place between them. Therefore, for 5 males there are 5 empty seats available between two consecutive males.
So, the possible arrangement will be ${}^5{P_2}$
Therefore, the total number of ways can be found by multiplying the remaining number of ways with possible arrangements, that is, \[4!{\text{ }} \times {}^5{P_2}\]
Thus, we have solved the value of ${}^5{P_2}$ using the formula,
We get,
$
\Rightarrow {}^5{P_2} = \dfrac{{5!}}{{3!}} \\
\Rightarrow {}^5{P_2} = \dfrac{{5 \times 4 \times 3!}}{{3!}} \\
\Rightarrow {}^5{P_2} = 20 \\
$
Now, we will find the product to determine the number of ways such that no two females are seated together.
$
= \,4 \times 3 \times 2 \times 1 \times 20 \\
= 480\,{\text{ways}} \\
$
Hence, the correct option is A.
Note: Apply permutation where total number of possibilities are given out of which particular possibilities are asked. Apply the permutation formula that is \[{}^n{p_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] where \[n\] represents the total number of members. As one man has selected one position then the number of choices left for 2 people is 4 and in a similar way for 3 people the number of choices left is 3 and so on.
Complete step by step solution:
It is given that there are 5 male and 2 female members seated around a table such that two female members are not seated together.
Initially we have to fix up a male at a particular position.
Since the number of positions is 5, out of which one seat is fixed for one male member already, hence the remaining 4 males can be seated in 4! ways.
As no two females are seated together and if we take any two males, there is one place between them. Therefore, for 5 males there are 5 empty seats available between two consecutive males.
So, the possible arrangement will be ${}^5{P_2}$
Therefore, the total number of ways can be found by multiplying the remaining number of ways with possible arrangements, that is, \[4!{\text{ }} \times {}^5{P_2}\]
Thus, we have solved the value of ${}^5{P_2}$ using the formula,
We get,
$
\Rightarrow {}^5{P_2} = \dfrac{{5!}}{{3!}} \\
\Rightarrow {}^5{P_2} = \dfrac{{5 \times 4 \times 3!}}{{3!}} \\
\Rightarrow {}^5{P_2} = 20 \\
$
Now, we will find the product to determine the number of ways such that no two females are seated together.
$
= \,4 \times 3 \times 2 \times 1 \times 20 \\
= 480\,{\text{ways}} \\
$
Hence, the correct option is A.
Note: Apply permutation where total number of possibilities are given out of which particular possibilities are asked. Apply the permutation formula that is \[{}^n{p_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] where \[n\] represents the total number of members. As one man has selected one position then the number of choices left for 2 people is 4 and in a similar way for 3 people the number of choices left is 3 and so on.
Recently Updated Pages
JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 28th Shift 2) Maths Question Paper with Answer Key
Arithmetic, Geometric and Harmonic Progression - Important Concepts and Tips for JEE
Centrifugal Force - Important Concepts and Tips for JEE
JEE Main 2022 June 29 Shift 1 Question Paper with Answer Key
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Login 2045: Step-by-Step Instructions and Details
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Inertial and Non-Inertial Frame of Reference - JEE Important Topic
Physics Average Value and RMS Value JEE Main 2025
Other Pages
Clemmenson and Wolff Kishner Reductions for JEE
Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic
JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions
Current Loop as Magnetic Dipole and Its Derivation for JEE
JEE Main Marks Vs Percentile 2025: Calculate Percentile Based on Marks
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF