The orbital angular momentum of a p-electron is given as:
(a) \[\sqrt{3}\dfrac{h}{2\pi }\]
(b) \[\sqrt{\dfrac{3}{2}}\dfrac{h}{\pi }\]
(c) \[\sqrt{6}.\sqrt{\dfrac{h}{2\pi }}\]
(d) \[\dfrac{h}{\sqrt{2}\pi }\]
Answer
Verified
116.1k+ views
Hint: Bohr’s atomic model states many postulates for the arrangement of electrons in different orbits around the nucleus. According to one of his postulates, an electron can move around the nucleus in that circular orbital for which its angular momentum is an integral multiple of \[\dfrac{h}{2\pi }\].
Complete step by step answer:
According to the question, we need to find the angular momentum of a p-electron, i.e., this electron belongs to the p-orbital.
As we know, orbital angular momentum depends on ‘l’.
For p-orbital, the value of l = 1.
Formula of orbital angular momentum (m) is give as –
Orbital angular momentum = \[\sqrt{l(l+1)}\dfrac{h}{2\pi }\]
Since, l = 1.
Therefore,
Orbital angular momentum (m) = \[\sqrt{1(1+1)}\dfrac{h}{2\pi }\] = \[\sqrt{2}\dfrac{h}{2\pi }\]
On rationalization (i.e. multiplying numerator and denominator by\[\sqrt{2}\]), we get –
m =\[\dfrac{\sqrt{2}h}{2\pi }\times\dfrac{\sqrt{2}}{\sqrt{2}}\]
m =\[\dfrac{h}{\sqrt{2}\pi }\].
Therefore, the answer is – option (d) – The orbital angular momentum of a p-electron is given as \[\dfrac{h}{\sqrt{2}\pi }\].
Additional Information: The value of ‘l’ for different orbitals is as follows –
l = 0 for s-orbital
l = 1 for p-orbital
l = 2 for d-orbital
l = 3 for f-orbital
Note: The quantum number represents the complete address of an electron. There are four types of quantum numbers –
1. Principal quantum number (n)
- It tells about the size of the orbital, i.e. the average distance of an electron from the nucleus.
2. Azimuthal quantum number (l)
- It denotes the sub-level (orbital) to which the electron belongs.
- It ranges from 0 to (n-1).
3. Magnetic quantum number (m)
- It determines the preferred orientation of orbitals in space
- For each value of l, there are 2l+1 values of m.
4. Spin quantum number (s)
It tells about the direction of spin.
+1/2 represents clockwise spin.
-1/2 represents anti-clockwise spin.
Complete step by step answer:
According to the question, we need to find the angular momentum of a p-electron, i.e., this electron belongs to the p-orbital.
As we know, orbital angular momentum depends on ‘l’.
For p-orbital, the value of l = 1.
Formula of orbital angular momentum (m) is give as –
Orbital angular momentum = \[\sqrt{l(l+1)}\dfrac{h}{2\pi }\]
Since, l = 1.
Therefore,
Orbital angular momentum (m) = \[\sqrt{1(1+1)}\dfrac{h}{2\pi }\] = \[\sqrt{2}\dfrac{h}{2\pi }\]
On rationalization (i.e. multiplying numerator and denominator by\[\sqrt{2}\]), we get –
m =\[\dfrac{\sqrt{2}h}{2\pi }\times\dfrac{\sqrt{2}}{\sqrt{2}}\]
m =\[\dfrac{h}{\sqrt{2}\pi }\].
Therefore, the answer is – option (d) – The orbital angular momentum of a p-electron is given as \[\dfrac{h}{\sqrt{2}\pi }\].
Additional Information: The value of ‘l’ for different orbitals is as follows –
l = 0 for s-orbital
l = 1 for p-orbital
l = 2 for d-orbital
l = 3 for f-orbital
Note: The quantum number represents the complete address of an electron. There are four types of quantum numbers –
1. Principal quantum number (n)
- It tells about the size of the orbital, i.e. the average distance of an electron from the nucleus.
2. Azimuthal quantum number (l)
- It denotes the sub-level (orbital) to which the electron belongs.
- It ranges from 0 to (n-1).
3. Magnetic quantum number (m)
- It determines the preferred orientation of orbitals in space
- For each value of l, there are 2l+1 values of m.
4. Spin quantum number (s)
It tells about the direction of spin.
+1/2 represents clockwise spin.
-1/2 represents anti-clockwise spin.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6