
The orbital momentum and angular momentum (classical analogue) for the electron of 4s-orbital are respectively, equal to:
(A) \[\sqrt{12}\dfrac{h}{2\pi }\] and \[\dfrac{h}{2\pi }\]
(B) Zero and \[\dfrac{2h}{\pi }\]
(C) \[\sqrt{6}h\]and \[\dfrac{2h}{\pi }\]
(D) \[\sqrt{2}\dfrac{h}{2\pi }\]and\[\dfrac{3h}{2\pi }\]
Answer
132.3k+ views
Hint: For finding the orbital angular momentum and angular momentum we have to write their formulas in terms of ‘n’ and ‘l’. By using direct formulas we can find these values for 4s- orbital. Use the hint that l value for s orbital is zero.
Step by step solution:
Orbital Angular Momentum: The angular momentum of a microparticle moving in a strong field that has spherical symmetry. And the term “orbital angular momentum” is due to the graphic representation of the motion of an atomic electron in a spherically symmetric field of the nucleus in a definite closed orbit.
The angular momentum of an electron by Bohr is given by mvr or \[\dfrac{nh}{2\pi }\] (where v is the velocity, n is the orbit in which electron is, m is mass of the electron, and r is the radius of the nth orbit).
Orbital angular momentum:
Orbital angular momentum is the component of angular momentum of an electron in an atom arising from its orbital motion rather than from its spin.
The orbital angular momentum is given by the formula:
Orbital angular momentum \[(O.A.M.)=\sqrt{l(l+1)}\dfrac{h}{2\pi }\]
Where h = planck constant
‘l’ = Azimuthal quantum number
And we know that for ‘s’ orbital value of l = 0
Hence,
Orbital angular momentum for 4s = \[\sqrt{0(0+1)}\dfrac{h}{2\pi }\]
Orbital angular momentum = 0
And we know that Angular momentum \[A.M.=mvr=\dfrac{nh}{2\pi }\]
For ‘4s‘ the value of n = 4
Now we will put this value of n in above equation:
Angular momentum \[A.M.=\dfrac{4h}{2\pi }\]
Angular momentum A.M. = \[\dfrac{2h}{\pi }\]
So, from the above derivation or calculation we can say that the answer is option “B”.
Note: In the orbital angular momentum there is no role of orbital number and in angular momentum there is no role of Azimuthal quantum number. And here you should remember the Azimuthal quantum number for every orbital, which is 0 for s, 1 for p, and 2 for d orbital.
Step by step solution:
Orbital Angular Momentum: The angular momentum of a microparticle moving in a strong field that has spherical symmetry. And the term “orbital angular momentum” is due to the graphic representation of the motion of an atomic electron in a spherically symmetric field of the nucleus in a definite closed orbit.
The angular momentum of an electron by Bohr is given by mvr or \[\dfrac{nh}{2\pi }\] (where v is the velocity, n is the orbit in which electron is, m is mass of the electron, and r is the radius of the nth orbit).
Orbital angular momentum:
Orbital angular momentum is the component of angular momentum of an electron in an atom arising from its orbital motion rather than from its spin.
The orbital angular momentum is given by the formula:
Orbital angular momentum \[(O.A.M.)=\sqrt{l(l+1)}\dfrac{h}{2\pi }\]
Where h = planck constant
‘l’ = Azimuthal quantum number
And we know that for ‘s’ orbital value of l = 0
Hence,
Orbital angular momentum for 4s = \[\sqrt{0(0+1)}\dfrac{h}{2\pi }\]
Orbital angular momentum = 0
And we know that Angular momentum \[A.M.=mvr=\dfrac{nh}{2\pi }\]
For ‘4s‘ the value of n = 4
Now we will put this value of n in above equation:
Angular momentum \[A.M.=\dfrac{4h}{2\pi }\]
Angular momentum A.M. = \[\dfrac{2h}{\pi }\]
So, from the above derivation or calculation we can say that the answer is option “B”.
Note: In the orbital angular momentum there is no role of orbital number and in angular momentum there is no role of Azimuthal quantum number. And here you should remember the Azimuthal quantum number for every orbital, which is 0 for s, 1 for p, and 2 for d orbital.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Which among the following is the softest metal A Platinum class 11 chemistry JEE_Main

Calculate CFSE of the following complex FeCN64 A 04Delta class 11 chemistry JEE_Main

Clemmenson and Wolff Kishner Reductions for JEE

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
JEE Advanced 2024 Syllabus Weightage

Displacement-Time Graph and Velocity-Time Graph for JEE

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF
