What should be the osmotic pressure of a solution of urea in water at 30°C which has boiling point 0.052 K higher than pure water? Assume molarity and molality to be the same. \[{{K}_{b}}\] for water is 0.52 K \[kg\,mo{{l}^{-1}}\].
(a)- 0.487 atm
(b)- 1.487 atm
(c)- 2.487 atm
(d)- 3.487 atm
Answer
Verified
122.7k+ views
Hint: The physical properties of a solution that depends on the number of particles present in a given volume of the solution or the mole fraction of the solute present in the solution are called colligative properties.
Complete step by step solution:
Osmotic pressure of a solution is one of the colligative properties. It is defined as the external pressure that must be applied on the solution in order to stop the flow of the solvent into the solution through a semipermeable membrane. It is given by the equation,
\[\pi =iCRT\]
where, \[\pi \] = osmotic pressure
i = Van’t Hoff factor
C = molar concentration of the solute in the solution
R = universal gas constant
T = temperature
We have been given in the above problem,
Difference in boiling point (\[\Delta T\]) = 0.052K
\[{{K}_{b}}\] for water is 0.52 K \[kg\,mo{{l}^{-1}}\]
We also know, \[\Delta T\]= \[{{K}_{b}}\times m\]
where, \[{{K}_{b}}\] = molal elevation constant,
m = molality
Therefore, by making use of above two relationship, we can calculate molality by rearranging as,
Molality (m) = \[\dfrac{\Delta T}{{{K}_{b}}}\]= \[\dfrac{0.052}{0.52}\]= 0.1
In the above problem, we have been given that, molality = molarity.
Therefore, molarity = 0.1 = C
Now, since we have got the value of C, we can calculate the osmotic pressure (\[\pi \]) by using relation
\[\pi =iCRT\]
=1 ×0.1×0.0821×303
=2.487 atm.
Therefore, the osmotic pressure of a solution of urea in water at 30°C is calculated to be 2.487 atm.
Hence, option (c) is correct.
Note: Semipermeable membrane only allows the movement of solvent molecules through it. Solute particles cannot pass through this membrane. Osmotic pressure is also applicable to gases and supercritical fluids.
Complete step by step solution:
Osmotic pressure of a solution is one of the colligative properties. It is defined as the external pressure that must be applied on the solution in order to stop the flow of the solvent into the solution through a semipermeable membrane. It is given by the equation,
\[\pi =iCRT\]
where, \[\pi \] = osmotic pressure
i = Van’t Hoff factor
C = molar concentration of the solute in the solution
R = universal gas constant
T = temperature
We have been given in the above problem,
Difference in boiling point (\[\Delta T\]) = 0.052K
\[{{K}_{b}}\] for water is 0.52 K \[kg\,mo{{l}^{-1}}\]
We also know, \[\Delta T\]= \[{{K}_{b}}\times m\]
where, \[{{K}_{b}}\] = molal elevation constant,
m = molality
Therefore, by making use of above two relationship, we can calculate molality by rearranging as,
Molality (m) = \[\dfrac{\Delta T}{{{K}_{b}}}\]= \[\dfrac{0.052}{0.52}\]= 0.1
In the above problem, we have been given that, molality = molarity.
Therefore, molarity = 0.1 = C
Now, since we have got the value of C, we can calculate the osmotic pressure (\[\pi \]) by using relation
\[\pi =iCRT\]
=1 ×0.1×0.0821×303
=2.487 atm.
Therefore, the osmotic pressure of a solution of urea in water at 30°C is calculated to be 2.487 atm.
Hence, option (c) is correct.
Note: Semipermeable membrane only allows the movement of solvent molecules through it. Solute particles cannot pass through this membrane. Osmotic pressure is also applicable to gases and supercritical fluids.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Online Mock Test for Class 12
Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions
NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether
NCERT Solutions for Class 12 Chemistry Chapter 8 Aldehydes Ketones and Carboxylic Acids