
The photoelectric threshold for a metal surface is \[6600\;\dot {\rm A}\]. The work function for this is:
A. \[1.87V\]
B. \[1.87eV\]
C. \[18.7eV\]
D. \[0.18eV\]
Answer
131.4k+ views
Hint:n photoelectric effect, the minimum amount of energy required for electron emission from the metal surface is the work function of that metal and the frequency of light corresponding to this minimum energy is called threshold frequency and the corresponding wavelength is called threshold wavelength. It is calculated as work function, \[{\phi _o} = h{\nu _{threshold}} = \dfrac{{hc}}{{{\lambda _{threshold}}}}\].
Formula Used:
Energy, \[E = h\nu = \dfrac{{hc}}{\lambda }\]
Equation for photoelectric effect, \[h\nu = {\phi _o} + {E_k}\]
Work function, \[{\phi _o} = h{\nu _{threshold}} = \dfrac{{hc}}{{{\lambda _{threshold}}}}\]
Where,
E = incident energy
\[{\phi _o}\]= Work function of the metal
\[{E_k}\]= energy of the emitted photoelectron
\[c{\rm{ }}\] = speed of light = \[3 \times {10^8}m/s\]
\[\nu \]= frequency of the light,
\[{\nu _{threshold}}\]= threshold frequency,
\[\lambda \]= wavelength of the light,
\[{\lambda _{threshold}}\]= threshold wavelength
Complete step by step solution:
Photoelectric effect was discovered by Einstein in 1905 for which he also won the Nobel prize in physics. According to its theory, when a light of sufficient energy is incident on a metal surface, the photons of the incident light impart energy to the electrons on the metallic surface. If this energy is higher than the threshold energy of the metal, the electrons become sufficiently energetic to escape the metal surface and are emitted. These electrons are called photoelectrons whose energy is less than the energy of the incident light as some of the energy is utilised in overcoming the barrier energy or the work function.
Given: Threshold wavelength for a particular metallic surface , \[{\lambda _{threshold}}\] = \[6600\;\dot {\rm A}\]. \[c{\rm{ }} = {\rm{ }}speed{\rm{ }}of{\rm{ }}light{\rm{ }} = 3 \times {10^8}m/s\]
We need to determine the work function.
Equation for the photoelectric effect is \[h\nu = {\phi _o} + {E_k}\]. Here we have to calculate the work function which is given by :
\[{\phi _o} = h{\nu _{threshold}} = \dfrac{{hc}}{{{\lambda _{threshold}}}}\]
\[\Rightarrow {\phi _o} = \dfrac{{hc}}{{{\lambda _{threshold}}}} \\ \]
We know, \[1\dot A = {10^{ - 10}}m\]
\[{\phi _o} = \dfrac{{6.64 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{6600 \times {{10}^{ - 10}}}} \\ \]
\[\Rightarrow {\phi _o} = 3 \times {10^{ - 19}}J \\ \]
We need the answer in eV. We know that \[1eV = 1.6 \times {10^{ - 19}}J\]
\[{\phi _o} = \dfrac{{3 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}\] eV
\[\therefore {\phi _o} = 1.87\,eV\]
Hence option B is the correct answer.
Note: No emission of electrons or any photoelectric effect will take place if the energy supplied is less than the work function. Work function is a property of the metal that depends on the metal. For e.g., work function is different for different metals like Gold, Silver among others. It is independent of the nature or the property of the incident light. From the total energy supplied on the metal surface , the remaining energy after the work function is responsible for emission of the electron from the surface. This extra energy is converted to kinetic energy which enables the electron to emit from the metal surface.
Formula Used:
Energy, \[E = h\nu = \dfrac{{hc}}{\lambda }\]
Equation for photoelectric effect, \[h\nu = {\phi _o} + {E_k}\]
Work function, \[{\phi _o} = h{\nu _{threshold}} = \dfrac{{hc}}{{{\lambda _{threshold}}}}\]
Where,
E = incident energy
\[{\phi _o}\]= Work function of the metal
\[{E_k}\]= energy of the emitted photoelectron
\[c{\rm{ }}\] = speed of light = \[3 \times {10^8}m/s\]
\[\nu \]= frequency of the light,
\[{\nu _{threshold}}\]= threshold frequency,
\[\lambda \]= wavelength of the light,
\[{\lambda _{threshold}}\]= threshold wavelength
Complete step by step solution:
Photoelectric effect was discovered by Einstein in 1905 for which he also won the Nobel prize in physics. According to its theory, when a light of sufficient energy is incident on a metal surface, the photons of the incident light impart energy to the electrons on the metallic surface. If this energy is higher than the threshold energy of the metal, the electrons become sufficiently energetic to escape the metal surface and are emitted. These electrons are called photoelectrons whose energy is less than the energy of the incident light as some of the energy is utilised in overcoming the barrier energy or the work function.
Given: Threshold wavelength for a particular metallic surface , \[{\lambda _{threshold}}\] = \[6600\;\dot {\rm A}\]. \[c{\rm{ }} = {\rm{ }}speed{\rm{ }}of{\rm{ }}light{\rm{ }} = 3 \times {10^8}m/s\]
We need to determine the work function.
Equation for the photoelectric effect is \[h\nu = {\phi _o} + {E_k}\]. Here we have to calculate the work function which is given by :
\[{\phi _o} = h{\nu _{threshold}} = \dfrac{{hc}}{{{\lambda _{threshold}}}}\]
\[\Rightarrow {\phi _o} = \dfrac{{hc}}{{{\lambda _{threshold}}}} \\ \]
We know, \[1\dot A = {10^{ - 10}}m\]
\[{\phi _o} = \dfrac{{6.64 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{6600 \times {{10}^{ - 10}}}} \\ \]
\[\Rightarrow {\phi _o} = 3 \times {10^{ - 19}}J \\ \]
We need the answer in eV. We know that \[1eV = 1.6 \times {10^{ - 19}}J\]
\[{\phi _o} = \dfrac{{3 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}\] eV
\[\therefore {\phi _o} = 1.87\,eV\]
Hence option B is the correct answer.
Note: No emission of electrons or any photoelectric effect will take place if the energy supplied is less than the work function. Work function is a property of the metal that depends on the metal. For e.g., work function is different for different metals like Gold, Silver among others. It is independent of the nature or the property of the incident light. From the total energy supplied on the metal surface , the remaining energy after the work function is responsible for emission of the electron from the surface. This extra energy is converted to kinetic energy which enables the electron to emit from the metal surface.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
