The photoelectric threshold wavelength of silver is $3250 \times {10^{ - 19}}m$. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength $2536 \times {10^{ - 10}}m$is:
(Given $h = 4.14 \times {10^{ - 15}}eVs$ and $c = 3 \times {10^8}m{s^{ - 1}}$)
(A) $ \approx 0.3 \times {10^6}m{s^{ - 1}}$
(B) $ \approx 6 \times {10^5}m{s^{ - 1}}$
(C) $ \approx 6 \times {10^6}m{s^{ - 1}}$
(D) $ \approx 61 \times {10^3}m{s^{ - 1}}$
Answer
Verified
120.9k+ views
Hint According to Einstein’s equation for the photoelectric effect, the kinetic energy of the electron is given by the difference in the incident energy and the wave function of the electron. And the kinetic energy is given by half of mass times the velocity squared. This can be used to determine the velocity of an electron.
Formula used:
$\Rightarrow$ $K = \dfrac{1}{2}m{v^2}$
$\Rightarrow$ $K = E - \phi $
$\Rightarrow$ $E = \dfrac{{hc}}{\lambda }$
Where $K$ is the kinetic energy of the electron.
$\Rightarrow$ $m$ is the mass of the electron.
$\Rightarrow$ $v$ is the velocity with which the electron is ejected.
$\Rightarrow$ $E$ is the energy of incident light.
$\Rightarrow$ $\phi $ is the work function of the electron.
$h$ is the Planck’s constant.
$\Rightarrow$ $c$ is the speed of light in vacuum.
$\lambda $ is the wavelength of the light.
Complete Step by step solution
When light with a frequency greater than the threshold frequency strikes photoelectric metal, some part of this energy called Work Function $\left( \phi \right)$ is used to provide enough energy to the electrons to escape the lattice, the rest of the energy is used as kinetic energy with which the electron travels away from the metal plate. This relation can be given by-
$\Rightarrow$ $E = K + \phi $
The kinetic energy is-
$\Rightarrow$ $K = E - \phi $
The threshold wavelength$\left( {{\lambda _0}} \right)$is the wavelength at which the electron gains enough energy to escape the lattice. The energy carried by the threshold frequency is equal to the work function of the electron.
Therefore,
$\Rightarrow$ $\phi = \dfrac{{hc}}{{{\lambda _0}}}$
The incident energy on the silver surface,
$\Rightarrow$ $E = \dfrac{{hc}}{\lambda }$
Therefore,
$\Rightarrow$ $K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}$
We know that,
$K = \dfrac{1}{2}m{v^2}$
The equation becomes-
$\Rightarrow$ $\dfrac{1}{2}m{v^2} = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)$
Rearranging,
$\Rightarrow$ $v = \sqrt {\dfrac{{2hc}}{m}\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)} $
It is given in the question that,
Threshold wavelength,${\lambda _0} = 3250 \times {10^{ - 19}}m$
Incident wavelength, $\lambda = 2536 \times {10^{ - 10}}m$
Velocity of light, $c = 3 \times {10^8}m{s^{ - 1}}$
Mass of electron, $m = 9.1 \times {10^{ - 31}}kg$
The Planck’s constant, $h = 4.14 \times {10^{ - 15}}eVs$
Converting this into SI units,
$\Rightarrow$ $1eVs = 1.602 \times {10^{ - 19}}Js$
$\Rightarrow$ $h = 4.14 \times 1.602 \times {10^{ - 15}} \times {10^{ - 19}}Js$
$\Rightarrow$ $h = 6.63 \times {10^{ - 34}}Js$
Putting these values in the equation,
$v = \sqrt {\dfrac{{2 \times 6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{9.1 \times {{10}^{ - 31}}}}\left( {\dfrac{1}{{2536 \times {{10}^{ - 10}}}} - \dfrac{1}{{3250 \times {{10}^{ - 19}}}}} \right)} $
$v = \sqrt {\dfrac{{2 \times 6.63 \times 3 \times {{10}^{ - 34}} \times {{10}^8}}}{{9.1 \times {{10}^{ - 31}} \times {{10}^{ - 29}}}}\left( {\dfrac{{3250 \times {{10}^{ - 19}} - 2536 \times {{10}^{ - 10}}}}{{2536 \times 3250}}} \right)} $
On solving this equation we get,
$v \approx 6 \times {10^5}m/s$
Therefore, option (B) is correct.
Note To obtain the velocity in the SI units, the value of Planck’s constant must be converted into SI units and the mass of the electron must also be written in kilograms. Failure in doing so may give incorrect answers. Also, the equation for velocity can be solved step by step instead of a large-single equation to avoid calculation mistakes.
Formula used:
$\Rightarrow$ $K = \dfrac{1}{2}m{v^2}$
$\Rightarrow$ $K = E - \phi $
$\Rightarrow$ $E = \dfrac{{hc}}{\lambda }$
Where $K$ is the kinetic energy of the electron.
$\Rightarrow$ $m$ is the mass of the electron.
$\Rightarrow$ $v$ is the velocity with which the electron is ejected.
$\Rightarrow$ $E$ is the energy of incident light.
$\Rightarrow$ $\phi $ is the work function of the electron.
$h$ is the Planck’s constant.
$\Rightarrow$ $c$ is the speed of light in vacuum.
$\lambda $ is the wavelength of the light.
Complete Step by step solution
When light with a frequency greater than the threshold frequency strikes photoelectric metal, some part of this energy called Work Function $\left( \phi \right)$ is used to provide enough energy to the electrons to escape the lattice, the rest of the energy is used as kinetic energy with which the electron travels away from the metal plate. This relation can be given by-
$\Rightarrow$ $E = K + \phi $
The kinetic energy is-
$\Rightarrow$ $K = E - \phi $
The threshold wavelength$\left( {{\lambda _0}} \right)$is the wavelength at which the electron gains enough energy to escape the lattice. The energy carried by the threshold frequency is equal to the work function of the electron.
Therefore,
$\Rightarrow$ $\phi = \dfrac{{hc}}{{{\lambda _0}}}$
The incident energy on the silver surface,
$\Rightarrow$ $E = \dfrac{{hc}}{\lambda }$
Therefore,
$\Rightarrow$ $K = \dfrac{{hc}}{\lambda } - \dfrac{{hc}}{{{\lambda _0}}}$
We know that,
$K = \dfrac{1}{2}m{v^2}$
The equation becomes-
$\Rightarrow$ $\dfrac{1}{2}m{v^2} = hc\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)$
Rearranging,
$\Rightarrow$ $v = \sqrt {\dfrac{{2hc}}{m}\left( {\dfrac{1}{\lambda } - \dfrac{1}{{{\lambda _0}}}} \right)} $
It is given in the question that,
Threshold wavelength,${\lambda _0} = 3250 \times {10^{ - 19}}m$
Incident wavelength, $\lambda = 2536 \times {10^{ - 10}}m$
Velocity of light, $c = 3 \times {10^8}m{s^{ - 1}}$
Mass of electron, $m = 9.1 \times {10^{ - 31}}kg$
The Planck’s constant, $h = 4.14 \times {10^{ - 15}}eVs$
Converting this into SI units,
$\Rightarrow$ $1eVs = 1.602 \times {10^{ - 19}}Js$
$\Rightarrow$ $h = 4.14 \times 1.602 \times {10^{ - 15}} \times {10^{ - 19}}Js$
$\Rightarrow$ $h = 6.63 \times {10^{ - 34}}Js$
Putting these values in the equation,
$v = \sqrt {\dfrac{{2 \times 6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{9.1 \times {{10}^{ - 31}}}}\left( {\dfrac{1}{{2536 \times {{10}^{ - 10}}}} - \dfrac{1}{{3250 \times {{10}^{ - 19}}}}} \right)} $
$v = \sqrt {\dfrac{{2 \times 6.63 \times 3 \times {{10}^{ - 34}} \times {{10}^8}}}{{9.1 \times {{10}^{ - 31}} \times {{10}^{ - 29}}}}\left( {\dfrac{{3250 \times {{10}^{ - 19}} - 2536 \times {{10}^{ - 10}}}}{{2536 \times 3250}}} \right)} $
On solving this equation we get,
$v \approx 6 \times {10^5}m/s$
Therefore, option (B) is correct.
Note To obtain the velocity in the SI units, the value of Planck’s constant must be converted into SI units and the mass of the electron must also be written in kilograms. Failure in doing so may give incorrect answers. Also, the equation for velocity can be solved step by step instead of a large-single equation to avoid calculation mistakes.
Recently Updated Pages
What is Hybridisation? Types, Examples, and Importance
Young's Double Slit Experiment Step by Step Derivation
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Electric field due to uniformly charged sphere class 12 physics JEE_Main