
The position vector of a particle is determined by the expression $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$ .The distance traversed in first 10 sec is
A.500m
B.300m
C.150m
D.100m
Answer
140.4k+ views
Hint: Firstly, we will use the initial position at time = 0. Then we will put the value of time i.e, $t = 10$ . We will find the position at \[t = 0\] .Then we will find out the displacement vector by subtracting the final position vector at time \[t = 0\] from the initial position vector at time $t = 10$ . We will find only the magnitude of the displacement by taking mod on both sides.
Complete step by step solution
The position of an object is defined as its linear distance as well as its direction with respect to a preassigned reference point. Position is a physical quantity having both magnitude and direction. So, it is a vector quantity. It is called position vector and denoted by the symbol $\vec r$ .
Given that,
Position vector of particle is $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$
So, the position vector is the function of time.
Let, $\vec r(i) = $ initial position vector when time $(t) = 0$
$\therefore \vec r(i) = \vec r(t = 0) = 7\hat k.....(i)$
$\vec r(f) = $ final position vector at time \[\left( t \right) = 10\]
$\therefore \vec r(f) = \vec r(t = 10) = 3 \times {10^2}\hat i + 4 \times {10^2}\hat j + 7\hat k....(ii)$
Displacement is defined as the change in position of a moving body in a fixed direction.
So we can write that,
Displacement vector $(D) = \vec r(f) - \vec r(i)$
$
\left| D \right| = \left| {300\hat i + 400\hat j + (7 - 7)\hat k} \right| \\
\Rightarrow \left| D \right| = \sqrt {{{300}^2} + {{400}^2}} \\
$
$D = 500m$
Hence, distance traversed in first 10 sec is 500m (Option-A)
Note: One may think that after putting the value of $t = 10$ one can obtain the displacement vector. But this is actually a position vector. The displacement vector of a particle is the vector difference between its final and initial position vectors.
Additional Information:
For any particle in three-dimensional space, the displacement is represented by the straight line joining the initial and the final positions of the particle. If a particle travels from the point ${P_1}({x_1},{y_1},{z_1})$ to the point ${P_2}({x_2},{y_2},{z_2})$ then $\vec D$ represents its displacement. The magnitude of the displacement is given by $D = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2} + {{({z_2} - {z_1})}^2}} $
Complete step by step solution
The position of an object is defined as its linear distance as well as its direction with respect to a preassigned reference point. Position is a physical quantity having both magnitude and direction. So, it is a vector quantity. It is called position vector and denoted by the symbol $\vec r$ .
Given that,
Position vector of particle is $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$
So, the position vector is the function of time.
Let, $\vec r(i) = $ initial position vector when time $(t) = 0$
$\therefore \vec r(i) = \vec r(t = 0) = 7\hat k.....(i)$
$\vec r(f) = $ final position vector at time \[\left( t \right) = 10\]
$\therefore \vec r(f) = \vec r(t = 10) = 3 \times {10^2}\hat i + 4 \times {10^2}\hat j + 7\hat k....(ii)$
Displacement is defined as the change in position of a moving body in a fixed direction.
So we can write that,
Displacement vector $(D) = \vec r(f) - \vec r(i)$
$
\left| D \right| = \left| {300\hat i + 400\hat j + (7 - 7)\hat k} \right| \\
\Rightarrow \left| D \right| = \sqrt {{{300}^2} + {{400}^2}} \\
$
$D = 500m$
Hence, distance traversed in first 10 sec is 500m (Option-A)
Note: One may think that after putting the value of $t = 10$ one can obtain the displacement vector. But this is actually a position vector. The displacement vector of a particle is the vector difference between its final and initial position vectors.
Additional Information:
For any particle in three-dimensional space, the displacement is represented by the straight line joining the initial and the final positions of the particle. If a particle travels from the point ${P_1}({x_1},{y_1},{z_1})$ to the point ${P_2}({x_2},{y_2},{z_2})$ then $\vec D$ represents its displacement. The magnitude of the displacement is given by $D = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2} + {{({z_2} - {z_1})}^2}} $
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
