Answer
Verified
99.9k+ views
Hint From the position vector we can conclude that the particle moves in a straight line and also it is mentioned that there will be two instances of time when the particle will be at the initial position. We can use this concept to calculate the distance and compare it to get K
Formula used:
$S = ut + \dfrac{1}{2}a{t^2}$
Complete step by step answer:
The position vector which is varying with time is given in the question, this time varying position vector can be treated as displacement vector $\overrightarrow r = \overrightarrow {{r_0}} t(1 - \alpha t)$at $t = 0$, r will be zero. Since it is given that the particle returns to its initial position it means that the displacement is zero and there will be two values of t for which displacement is zero. They are
$ \Rightarrow {r_0}t(1 - \alpha t) = 0 \Rightarrow t = 0,\dfrac{1}{\alpha }$
To calculate the distance, we first need to calculate velocity, $v = \dfrac{{dr}}{{dt}} = \dfrac{{d\left[ {{r_0}(t - \alpha {t^2})} \right]}}{{dt}} = {r_0}(t - 2\alpha t)$
When a particle has zero displacement and travels some distance, at the point where the particle changes direction velocity is zero which is at half of the distance travelled. The time at which the velocity will be zero is $0 = {r_0}(t - 2\alpha t) \Rightarrow t = \dfrac{1}{{2\alpha }}$
Let the acceleration of particle be a
then $a = \dfrac{{dv}}{{dt}} = - 2\alpha {r_0}$
at initial point t=0, putting it in velocity equation we get initial velocity $u = {r_0}$and the point where velocity is zero, $t = \dfrac{1}{{2\alpha }}$
now using equation of motion $S = ut + \dfrac{1}{2}a{t^2}$where S is the distance travelled by a particle with initial velocity u and acceleration a in time t
let us assume that the particle travels x distance then, $x = {r_0} \times \dfrac{1}{{2\alpha }} + \dfrac{1}{2} \times ( - 2\alpha {r_0}) \times {\left( {\dfrac{1}{{2\alpha }}} \right)^2} \Rightarrow x = \dfrac{{{r_0}}}{{4\alpha }}$
the total distance travelled will be $2 \times \dfrac{{{r_0}}}{{4\alpha }}$,comparing this with the value given in question $\dfrac{{K{r_0}}}{{16\alpha }}$
$ \Rightarrow K = 8$
Hence the value of K is 8.
Note:
The particle was moving in the positive x- direction. The negative sign on acceleration indicates that it is retarding in nature. This means that the velocity of the body in motion is gradually decreasing with time.
Formula used:
$S = ut + \dfrac{1}{2}a{t^2}$
Complete step by step answer:
The position vector which is varying with time is given in the question, this time varying position vector can be treated as displacement vector $\overrightarrow r = \overrightarrow {{r_0}} t(1 - \alpha t)$at $t = 0$, r will be zero. Since it is given that the particle returns to its initial position it means that the displacement is zero and there will be two values of t for which displacement is zero. They are
$ \Rightarrow {r_0}t(1 - \alpha t) = 0 \Rightarrow t = 0,\dfrac{1}{\alpha }$
To calculate the distance, we first need to calculate velocity, $v = \dfrac{{dr}}{{dt}} = \dfrac{{d\left[ {{r_0}(t - \alpha {t^2})} \right]}}{{dt}} = {r_0}(t - 2\alpha t)$
When a particle has zero displacement and travels some distance, at the point where the particle changes direction velocity is zero which is at half of the distance travelled. The time at which the velocity will be zero is $0 = {r_0}(t - 2\alpha t) \Rightarrow t = \dfrac{1}{{2\alpha }}$
Let the acceleration of particle be a
then $a = \dfrac{{dv}}{{dt}} = - 2\alpha {r_0}$
at initial point t=0, putting it in velocity equation we get initial velocity $u = {r_0}$and the point where velocity is zero, $t = \dfrac{1}{{2\alpha }}$
now using equation of motion $S = ut + \dfrac{1}{2}a{t^2}$where S is the distance travelled by a particle with initial velocity u and acceleration a in time t
let us assume that the particle travels x distance then, $x = {r_0} \times \dfrac{1}{{2\alpha }} + \dfrac{1}{2} \times ( - 2\alpha {r_0}) \times {\left( {\dfrac{1}{{2\alpha }}} \right)^2} \Rightarrow x = \dfrac{{{r_0}}}{{4\alpha }}$
the total distance travelled will be $2 \times \dfrac{{{r_0}}}{{4\alpha }}$,comparing this with the value given in question $\dfrac{{K{r_0}}}{{16\alpha }}$
$ \Rightarrow K = 8$
Hence the value of K is 8.
Note:
The particle was moving in the positive x- direction. The negative sign on acceleration indicates that it is retarding in nature. This means that the velocity of the body in motion is gradually decreasing with time.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main