
The pressure exerted by a liquid at depth is given by
Answer
220.8k+ views
Hint We know that liquid exerts equal pressure in every direction of its container, independent of the shape of the container. As we know that any liquid exerts a pressure at a point depends on the density of the liquid and the vertical depth. So here, we are provided with the depth and the density of the container and hence we will find the pressure exerted by the liquid for getting the final result.
Complete step-by-step
Given, the depth at which pressure is exerted is h
As we know that any liquid exerts a pressure at a point depends on the density of the liquid and the vertical depth.
if we assume the liquid has a density = d
depth is given = h and the acceleration due to gravity is g.
The pressure exerted by liquid at depth is
$P=h\ \ d\ \ g$
Where, P is the pressure exerted by liquid
Hence pressure exerted by liquid = wdg.
Note The equation has general validity beyond the special conditions under which it is derived here. Even if the container were not there, the surrounding fluid would still exert this pressure, keeping the fluid static. Thus the equation P = hρg represents the pressure due to the weight of any fluid of average density ρ at any depth h below its surface. For liquids, which are nearly incompressible, this equation holds to great depths. For gases, which are quite compressible, one can apply this equation as long as the density changes are small over the depth considered.
Complete step-by-step
Given, the depth at which pressure is exerted is h
As we know that any liquid exerts a pressure at a point depends on the density of the liquid and the vertical depth.
if we assume the liquid has a density = d
depth is given = h and the acceleration due to gravity is g.
The pressure exerted by liquid at depth is
$P=h\ \ d\ \ g$
Where, P is the pressure exerted by liquid
Hence pressure exerted by liquid = wdg.
Note The equation has general validity beyond the special conditions under which it is derived here. Even if the container were not there, the surrounding fluid would still exert this pressure, keeping the fluid static. Thus the equation P = hρg represents the pressure due to the weight of any fluid of average density ρ at any depth h below its surface. For liquids, which are nearly incompressible, this equation holds to great depths. For gases, which are quite compressible, one can apply this equation as long as the density changes are small over the depth considered.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

