The price of a car is lowered by \[20\% \] to Rs. 40,000. What was the original price?
Answer
Verified
116.4k+ views
Hint: Here, we will first assume the original price and then find the value of the reducing price using the original price. Then calculate the difference of reducing price from the original price of a car and take this difference equal to the reduced price to find the original price.
Complete step-by-step solution
Let us assume that the original price is Rs. \[x\].
We will first find the value of reducing price of a car lowered by \[20\% \] in terms of \[x\].
\[\dfrac{{20}}{{100}}x\]
Now we will calculate the original price of a car, which was lowered to Rs. 40,000 by subtracting the reducing price from the original price.
\[
\Rightarrow x - \dfrac{{20}}{{100}}x = 40000 \\
\Rightarrow \dfrac{{100x - 20x}}{{100}} = 40000 \\
\Rightarrow \dfrac{{80x}}{{100}} = 40000 \\
\]
Multiplying the above equation by 100 on each of the sides, we get
\[
\Rightarrow \dfrac{{80x}}{{100}} \times 100 = 40000 \times 100 \\
\Rightarrow 80x = 4000000 \\
\]
Dividing the above equation by 80 on both sides, we get
\[
\Rightarrow \dfrac{{80x}}{{80}} = \dfrac{{4000000}}{{80}} \\
\Rightarrow x = 50000 \\
\]
Thus, the original price of a car is Rs. 50000.
Note: In these types of questions, we first assume the original price as any variable and then find the reducing price using the original price. In this question, some students find the sum of the reducing price and original price, which is wrong, we always have to find the difference as the prices are lowered.
Complete step-by-step solution
Let us assume that the original price is Rs. \[x\].
We will first find the value of reducing price of a car lowered by \[20\% \] in terms of \[x\].
\[\dfrac{{20}}{{100}}x\]
Now we will calculate the original price of a car, which was lowered to Rs. 40,000 by subtracting the reducing price from the original price.
\[
\Rightarrow x - \dfrac{{20}}{{100}}x = 40000 \\
\Rightarrow \dfrac{{100x - 20x}}{{100}} = 40000 \\
\Rightarrow \dfrac{{80x}}{{100}} = 40000 \\
\]
Multiplying the above equation by 100 on each of the sides, we get
\[
\Rightarrow \dfrac{{80x}}{{100}} \times 100 = 40000 \times 100 \\
\Rightarrow 80x = 4000000 \\
\]
Dividing the above equation by 80 on both sides, we get
\[
\Rightarrow \dfrac{{80x}}{{80}} = \dfrac{{4000000}}{{80}} \\
\Rightarrow x = 50000 \\
\]
Thus, the original price of a car is Rs. 50000.
Note: In these types of questions, we first assume the original price as any variable and then find the reducing price using the original price. In this question, some students find the sum of the reducing price and original price, which is wrong, we always have to find the difference as the prices are lowered.
Recently Updated Pages
Difference Between Rows and Columns: JEE Main 2024
Difference Between Length and Height: JEE Main 2024
Difference Between Natural and Whole Numbers: JEE Main 2024
Difference Between Square and Rectangle: JEE Main 2024
Difference Between Cube and Cuboid: JEE Main 2024
Algebraic Formula
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main 27 January 2024 Shift 1 Question Paper with Solutions
JEE Main Physics Question Paper with Answer Keys and Solutions
JEE Main Syllabus 2025 (Updated)
JEE Main Marks vs Rank 2025
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks
Other Pages
NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume
NCERT Solutions for Class 9 Maths Chapter 9 Circles
NCERT Solutions for Class 9 Maths Chapter 11 Surface Areas And Volumes Ex 11.3
NCERT Solutions for Class 9 Maths Chapter 12 Statistics
NCERT Solutions for Class 9 Maths Chapter 10 Heron'S Formula
NCERT Solutions for Class 9 Maths In Hindi Chapter 1 Number System