The quantity of heat which crosses per unit area of a metal plate during condition depends upon
A. The density of the metal
B. The temperature gradient perpendicular to the area
C. The temperature to which the metal is heated
D. The area of the metal plate
Answer
Verified
120.6k+ views
Hint: To tackle this problem, we must first understand the rate of heat flow. The rate of heat flow is the quantity of heat transmitted per unit of time. We will discover the solution here by applying the heat flow formula.
Formula Used:
To find the heat flow the formula is,
\[Q = KA\dfrac{{\Delta T}}{L}\]
Where, A is a cross-sectional area, \[\Delta T\] is the temperature difference between two ends of a metal, L is the length of the metal plate and K is the thermal conductivity.
Complete step by step solution:
The quantity of heat is nothing but how much the heat flow per unit of time in a given material and is given by,
\[Q = KA\dfrac{{\Delta T}}{L}\]
As we can see here, the heat flow depends on the temperature gradient that is perpendicular to the area, that is it always depends on the difference in the temperature between the two ends of the metal and does not depend on the temperature to which the metal is heated. Therefore, the quantity of heat which crosses per unit area of a metal plate depends on the temperature gradient perpendicular to the area.
Hence, option B is the correct answer.
Note:Temperature gradients occur in solids, fluids, and as well as gases. For example, if the ends of an aluminium bar are exposed to two different temperatures, then, there exists a temperature gradient in the bar that causes the heat to flow from the hotter end to the cooler end.
Formula Used:
To find the heat flow the formula is,
\[Q = KA\dfrac{{\Delta T}}{L}\]
Where, A is a cross-sectional area, \[\Delta T\] is the temperature difference between two ends of a metal, L is the length of the metal plate and K is the thermal conductivity.
Complete step by step solution:
The quantity of heat is nothing but how much the heat flow per unit of time in a given material and is given by,
\[Q = KA\dfrac{{\Delta T}}{L}\]
As we can see here, the heat flow depends on the temperature gradient that is perpendicular to the area, that is it always depends on the difference in the temperature between the two ends of the metal and does not depend on the temperature to which the metal is heated. Therefore, the quantity of heat which crosses per unit area of a metal plate depends on the temperature gradient perpendicular to the area.
Hence, option B is the correct answer.
Note:Temperature gradients occur in solids, fluids, and as well as gases. For example, if the ends of an aluminium bar are exposed to two different temperatures, then, there exists a temperature gradient in the bar that causes the heat to flow from the hotter end to the cooler end.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More