
The radial part of wave function depends on the quantum numbers:
The question has multiple correct options
A. n
B. l
C. l, m$_{l}$
D. n only
Answer
138.6k+ views
Hint: The question will be solved on the basis of the solutions in consideration with the Schrodinger’s equation for the atomic orbitals. Identify the terms n, l and m$_{l}$; and the connection with the radial part of wave function could be known.
Complete step by step answer:
* First, we will define the radial wave function. Radial wave functions are considered in the solutions of Schrodinger equation as mentioned.
* We can say that it is defined in terms of the spherical coordinates, one spherical coordinate depicts the distance from the central of the nucleus, the second coordinate represents angle to that of the positive axis i.e. z-axis.
* Now, the third one represents the angle to that of angle in the xy-plane i.e. positive x-axis.
* If we talk about the mentioned options; n represents the principal quantum number i.e. 1, 2, 3, …..so on.
* The l represents the azimuthal quantum number i.e. 0, 1, …, n-1.
* Now, the next we have a magnetic quantum number (m$_{l}$), i.e. –l, …-2, -1, 0, 1, ..l.
* The radial wave function shows its dependence on principal quantum number, and the azimuthal quantum number, as it relates to the position of an electron at a specific point.
* In the last, we can conclude that the radial part of wave function depends on the quantum numbers n, and l.
Hence, the correct option is (A), and (B).
Note: Don’t get confused between the radial wave function, and the angular wave function. We already discussed the dependence of radial wave functions. The angular wave function depends upon azimuthal quantum number, and the magnetic quantum number. Also, Principal quantum number helps in determining the most probable distance and energy of an electron whereas the significance of azimuthal quantum number is in determining the shape of the orbital and its angular momentum.
Complete step by step answer:
* First, we will define the radial wave function. Radial wave functions are considered in the solutions of Schrodinger equation as mentioned.
* We can say that it is defined in terms of the spherical coordinates, one spherical coordinate depicts the distance from the central of the nucleus, the second coordinate represents angle to that of the positive axis i.e. z-axis.
* Now, the third one represents the angle to that of angle in the xy-plane i.e. positive x-axis.
* If we talk about the mentioned options; n represents the principal quantum number i.e. 1, 2, 3, …..so on.
* The l represents the azimuthal quantum number i.e. 0, 1, …, n-1.
* Now, the next we have a magnetic quantum number (m$_{l}$), i.e. –l, …-2, -1, 0, 1, ..l.
* The radial wave function shows its dependence on principal quantum number, and the azimuthal quantum number, as it relates to the position of an electron at a specific point.
* In the last, we can conclude that the radial part of wave function depends on the quantum numbers n, and l.
Hence, the correct option is (A), and (B).
Note: Don’t get confused between the radial wave function, and the angular wave function. We already discussed the dependence of radial wave functions. The angular wave function depends upon azimuthal quantum number, and the magnetic quantum number. Also, Principal quantum number helps in determining the most probable distance and energy of an electron whereas the significance of azimuthal quantum number is in determining the shape of the orbital and its angular momentum.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry
