The radial part of wave function depends on the quantum numbers:
The question has multiple correct options
A. n
B. l
C. l, m$_{l}$
D. n only
Answer
Verified
115.2k+ views
Hint: The question will be solved on the basis of the solutions in consideration with the Schrodinger’s equation for the atomic orbitals. Identify the terms n, l and m$_{l}$; and the connection with the radial part of wave function could be known.
Complete step by step answer:
* First, we will define the radial wave function. Radial wave functions are considered in the solutions of Schrodinger equation as mentioned.
* We can say that it is defined in terms of the spherical coordinates, one spherical coordinate depicts the distance from the central of the nucleus, the second coordinate represents angle to that of the positive axis i.e. z-axis.
* Now, the third one represents the angle to that of angle in the xy-plane i.e. positive x-axis.
* If we talk about the mentioned options; n represents the principal quantum number i.e. 1, 2, 3, …..so on.
* The l represents the azimuthal quantum number i.e. 0, 1, …, n-1.
* Now, the next we have a magnetic quantum number (m$_{l}$), i.e. –l, …-2, -1, 0, 1, ..l.
* The radial wave function shows its dependence on principal quantum number, and the azimuthal quantum number, as it relates to the position of an electron at a specific point.
* In the last, we can conclude that the radial part of wave function depends on the quantum numbers n, and l.
Hence, the correct option is (A), and (B).
Note: Don’t get confused between the radial wave function, and the angular wave function. We already discussed the dependence of radial wave functions. The angular wave function depends upon azimuthal quantum number, and the magnetic quantum number. Also, Principal quantum number helps in determining the most probable distance and energy of an electron whereas the significance of azimuthal quantum number is in determining the shape of the orbital and its angular momentum.
Complete step by step answer:
* First, we will define the radial wave function. Radial wave functions are considered in the solutions of Schrodinger equation as mentioned.
* We can say that it is defined in terms of the spherical coordinates, one spherical coordinate depicts the distance from the central of the nucleus, the second coordinate represents angle to that of the positive axis i.e. z-axis.
* Now, the third one represents the angle to that of angle in the xy-plane i.e. positive x-axis.
* If we talk about the mentioned options; n represents the principal quantum number i.e. 1, 2, 3, …..so on.
* The l represents the azimuthal quantum number i.e. 0, 1, …, n-1.
* Now, the next we have a magnetic quantum number (m$_{l}$), i.e. –l, …-2, -1, 0, 1, ..l.
* The radial wave function shows its dependence on principal quantum number, and the azimuthal quantum number, as it relates to the position of an electron at a specific point.
* In the last, we can conclude that the radial part of wave function depends on the quantum numbers n, and l.
Hence, the correct option is (A), and (B).
Note: Don’t get confused between the radial wave function, and the angular wave function. We already discussed the dependence of radial wave functions. The angular wave function depends upon azimuthal quantum number, and the magnetic quantum number. Also, Principal quantum number helps in determining the most probable distance and energy of an electron whereas the significance of azimuthal quantum number is in determining the shape of the orbital and its angular momentum.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6