Answer
Verified
112.5k+ views
Hint:In this question we have to find the θ at which the rate of change of torque with deflection is maximum. Therefore, we have to make $\dfrac{d\tau }{d\theta }$ maximum.
Formula used:
Torque τ= M×B (the cross product of magnetic moment and magnetic field)
Complete answer:
We know that for a magnet suspended freely in a uniform magnetic field, the torque is the cross product of the magnetic moment and the magnetic field.
τ= M×B
τ= MBsinθ (θ=angle between M and B)
The rate of change of torque τ with deflection θ=$\dfrac{d\tau }{d\theta }$
$\dfrac{d\tau }{d\theta }=\dfrac{d(MB\sin \theta )}{d\theta }$
$\dfrac{d\tau }{d\theta }=MB\cos \theta $
For $\dfrac{d\tau }{d\theta }$ to be maximum, MBcosθ should be maximum, that is cosθ should be maximum since we cannot change the magnetic moment or the magnetic field.
The maximum value of cosθ is 1 which happens when θ=0°.
Therefore, the rate of change of torque with deflection is maximum when vector M and vector B are parallel to each other.
The correct answer is 0°.
Note:The differentiation of sin θ with respect to θ gives cosθ with a positive sign. If we have to find the rate of change of something, we always take help of differentiation.
Formula used:
Torque τ= M×B (the cross product of magnetic moment and magnetic field)
Complete answer:
We know that for a magnet suspended freely in a uniform magnetic field, the torque is the cross product of the magnetic moment and the magnetic field.
τ= M×B
τ= MBsinθ (θ=angle between M and B)
The rate of change of torque τ with deflection θ=$\dfrac{d\tau }{d\theta }$
$\dfrac{d\tau }{d\theta }=\dfrac{d(MB\sin \theta )}{d\theta }$
$\dfrac{d\tau }{d\theta }=MB\cos \theta $
For $\dfrac{d\tau }{d\theta }$ to be maximum, MBcosθ should be maximum, that is cosθ should be maximum since we cannot change the magnetic moment or the magnetic field.
The maximum value of cosθ is 1 which happens when θ=0°.
Therefore, the rate of change of torque with deflection is maximum when vector M and vector B are parallel to each other.
The correct answer is 0°.
Note:The differentiation of sin θ with respect to θ gives cosθ with a positive sign. If we have to find the rate of change of something, we always take help of differentiation.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking