
The rate of transfer of energy in a wave depends:
A) Directly on the square of the wave amplitude and square of the wave frequency.
B) Directly on the square of the wave amplitude and square root of the wave frequency.
C) Directly on the wave frequency and square of the wave amplitude.
D) Directly on the wave amplitude and square of the wave frequency.
Answer
221.7k+ views
Hint: To find out the relation between the rate transfer of energy in a wave and the wave amplitude use formula for power ${{ P = }}\dfrac{{{1}}}{{{2}}}{{\mu }}{{{A}}^{{2}}}{{{\omega }}^{{2}}}$. As rate transfer of energy is equal to the power i.e. $\dfrac{{{{dE}}}}{{{{dt}}}}{{ = P}}$. Similarly using the same formula, find out the relation between the rate transfer of energy in a wave and the wave frequency. So, both the relations can be found using the same formula.
Complete step by step solution:
Wave motion is a disturbance which travels through a medium because of the repeated vibrations of the particles of the medium about their mean positions, in actual the disturbance is shifted from one particle to the next particle and so on.
The rate transfer of energy $\dfrac{{{{dE}}}}{{{{dt}}}}$ is also termed as power P.
Formula for time-average power is given by
$\dfrac{{{{dE}}}}{{{{dt}}}}{{ = P = }}\dfrac{{{1}}}{{{2}}}{{\mu }}{{{A}}^{{2}}}{{{\omega }}^{{2}}}$
Where ${{\mu = }}$Mass per unit length of the wave
A = Amplitude of the wave
${{\omega = }}$Wave frequency
Here $\dfrac{{{{dE}}}}{{{{dt}}}}{{ \propto }}{{{A}}^{{2}}}$
Thus, the rate transfer of energy in a wave depends directly on the square of the wave amplitude.
Also, $\dfrac{{{{dE}}}}{{{{dt}}}}{{ \propto }}{{{\omega }}^{{2}}}$
So, the rate transfer of energy in a wave depends directly on the square of the wave frequency.
Therefore, option (A) is the correct choice.
Note: When a transverse or longitudinal wave propagates through a medium, all the particles of the medium oscillate about the mean positions in the same manner but phase of oscillation changes from one particle to the next particle. Amplitude is the maximum displacement suffered by the particles of the medium about their mean positions. It is denoted by A. Angular frequency is the rate of phase with time. It is denoted by ${{\omega }}$.
Complete step by step solution:
Wave motion is a disturbance which travels through a medium because of the repeated vibrations of the particles of the medium about their mean positions, in actual the disturbance is shifted from one particle to the next particle and so on.
The rate transfer of energy $\dfrac{{{{dE}}}}{{{{dt}}}}$ is also termed as power P.
Formula for time-average power is given by
$\dfrac{{{{dE}}}}{{{{dt}}}}{{ = P = }}\dfrac{{{1}}}{{{2}}}{{\mu }}{{{A}}^{{2}}}{{{\omega }}^{{2}}}$
Where ${{\mu = }}$Mass per unit length of the wave
A = Amplitude of the wave
${{\omega = }}$Wave frequency
Here $\dfrac{{{{dE}}}}{{{{dt}}}}{{ \propto }}{{{A}}^{{2}}}$
Thus, the rate transfer of energy in a wave depends directly on the square of the wave amplitude.
Also, $\dfrac{{{{dE}}}}{{{{dt}}}}{{ \propto }}{{{\omega }}^{{2}}}$
So, the rate transfer of energy in a wave depends directly on the square of the wave frequency.
Therefore, option (A) is the correct choice.
Note: When a transverse or longitudinal wave propagates through a medium, all the particles of the medium oscillate about the mean positions in the same manner but phase of oscillation changes from one particle to the next particle. Amplitude is the maximum displacement suffered by the particles of the medium about their mean positions. It is denoted by A. Angular frequency is the rate of phase with time. It is denoted by ${{\omega }}$.
Recently Updated Pages
Uniform Acceleration Explained: Formula, Examples & Graphs

JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Apparent Frequency Explained: Formula, Uses & Examples

JEE Main 2023 (January 30th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2023 (April 15th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

