The ratio of intensities of two waves is 1:16. What will be the ratio of their amplitudes?
A. $\dfrac{{16}}{{17}}$
B. $\dfrac{1}{{16}}$
C. $\dfrac{1}{4}$
D. $\dfrac{1}{2}$
Answer
Verified
116.4k+ views
Hint: We know that Intensity of a wave is directly proportional to the square of amplitude. That is, $I \propto {a^2}$. where $I$ denotes the intensity of wave and $a$ denotes the amplitude.
In equation form it can be written as $I = c{a^2}$ where c is a constant. Since the ratio of intensity is given we can use this relation to find the ratio of amplitudes.
Complete step by step answer:
Let ${I_1}$ be the intensity of the first wave and ${I_1}$ be the intensity of the second wave.
Given, ${I_1}:{I_2} = 1:16$
Intensity of a wave is directly proportional to the square of amplitude.
$I \propto {a^2}$
That is,
$I = c{a^2}$ (1)
where c is a constant.
Let ${a_1}$ be the amplitude of the first wave. Then using equation(1) the intensity of the first wave ${I_1}$ can be written as ,
${I_1} = c{a_1}^2$ (2)
Let ${a_2}$ be the amplitude of the second wave Then using equation (1) intensity of second wave ${I_2}$ can be written as ,
${I_2} = c{a_2}^2$ (3)
Now let us divide equation (2) by (3). Then we get,
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{c{a_1}^2}}{{c{a_2}^2}}$
$\therefore \dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{a_1}^2}}{{{a_2}^2}}$
Now substitute the value of the ratio of intensities $\dfrac{{{I_1}}}{{{I_2}}}$ in the above equation. Then we get,
$\dfrac{1}{{16}} = \dfrac{{{a_1}^2}}{{{a_2}^2}}$
$ \Rightarrow \dfrac{{{a_1}}}{{{a_2}}} = \sqrt {\dfrac{1}{{16}}} $
$\therefore \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{1}{4}$
Therefore, the ratio of amplitudes of the waves is 1:4.
So, the answer is option C
Note: The equation for finding intensity is given as $I = 2{\pi ^2}\rho A{\upsilon ^2}{a^2}$where $\rho $ is the density of the medium, $A$ is the area, $\upsilon $ is the frequency, $a$ is the amplitude. While solving this question we assumed that $2{\pi ^2}\rho A{\upsilon ^2}$ is a constant. Since change in any of these factors is not mentioned it is okay to consider all those values as constant. But when they are changing, we cannot consider them as constants.
In equation form it can be written as $I = c{a^2}$ where c is a constant. Since the ratio of intensity is given we can use this relation to find the ratio of amplitudes.
Complete step by step answer:
Let ${I_1}$ be the intensity of the first wave and ${I_1}$ be the intensity of the second wave.
Given, ${I_1}:{I_2} = 1:16$
Intensity of a wave is directly proportional to the square of amplitude.
$I \propto {a^2}$
That is,
$I = c{a^2}$ (1)
where c is a constant.
Let ${a_1}$ be the amplitude of the first wave. Then using equation(1) the intensity of the first wave ${I_1}$ can be written as ,
${I_1} = c{a_1}^2$ (2)
Let ${a_2}$ be the amplitude of the second wave Then using equation (1) intensity of second wave ${I_2}$ can be written as ,
${I_2} = c{a_2}^2$ (3)
Now let us divide equation (2) by (3). Then we get,
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{c{a_1}^2}}{{c{a_2}^2}}$
$\therefore \dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{{a_1}^2}}{{{a_2}^2}}$
Now substitute the value of the ratio of intensities $\dfrac{{{I_1}}}{{{I_2}}}$ in the above equation. Then we get,
$\dfrac{1}{{16}} = \dfrac{{{a_1}^2}}{{{a_2}^2}}$
$ \Rightarrow \dfrac{{{a_1}}}{{{a_2}}} = \sqrt {\dfrac{1}{{16}}} $
$\therefore \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{1}{4}$
Therefore, the ratio of amplitudes of the waves is 1:4.
So, the answer is option C
Note: The equation for finding intensity is given as $I = 2{\pi ^2}\rho A{\upsilon ^2}{a^2}$where $\rho $ is the density of the medium, $A$ is the area, $\upsilon $ is the frequency, $a$ is the amplitude. While solving this question we assumed that $2{\pi ^2}\rho A{\upsilon ^2}$ is a constant. Since change in any of these factors is not mentioned it is okay to consider all those values as constant. But when they are changing, we cannot consider them as constants.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids