
The ratio of surface tensions of mercury and water is given to be 7.5 while the ratio of their densities is 13.6. Their contact angles, with glass, are close to \[{135^ \circ }\] and \[{0^ \circ }\], respectively. It is observed that mercury gets depressed by an amount h in a capillary tube of radius \[{r_1}\], while water rises by the same amount h in a capillary tube of radius ${r_2}$. The ratio, $\left( {\dfrac{{{r_2}}}{{{r_1}}}} \right)$, is then close to:
A) $\dfrac{2}{3}$
B) $\dfrac{3}{5}$
C) $\dfrac{2}{5}$
D) $\dfrac{4}{5}$
Answer
219k+ views
Hint: The surface of liquids such as water and mercury appear as if they are stretched. This is due to the phenomenon of surface tension. Due to the surface tension, the liquid has the tendency to maintain the most minimum surface area.
Formula used:
Height of liquid column raised by surface tension is given by:
$h = \dfrac{{2S\cos \theta }}{{r\rho g}}$....................(1)
Where,
h is the height of the liquid column,
S is surface tension,
$\theta $ is the contact angle,
r is the radius of the capillary tube,
Complete step by step answer:
Given,
Ratio of surface tension for mercury and water is 7.5, i.e. $\dfrac{{{S_2}}}{{{S_1}}} = 7.5 = \dfrac{{15}}{2}$.
Contact angles of mercury and water are ${\theta _2} = {135^ \circ }$ and ${\theta _1} = {0^ \circ }$ respectively.
Ratio of their density is 13.6.
Thus, ratio is given by
$\dfrac{{{\rho _2}}}{{{\rho _1}}} = 13.6$
Therefore,
Height raised in the water column is the same as the height dip of the mercury column. Hence, $\dfrac{{{h_1}}}{{{h_2}}} = - 1$.
To find:
Value of the ratio $\dfrac{{{r_2}}}{{{r_1}}}$.
Substituting the expression for height of the liquid column in the ratio of their heights and rearranging, we obtain –
$\dfrac{{{h}_{1}}}{{{h}_{2}}}=\dfrac{\dfrac{2{{S}_{1}}\cos {{\theta }_{1}}}{{{r}_{1}}{{\rho }_{1}}g}}{\dfrac{2{{S}_{2}}\cos {{\theta }_{2}}}{{{r}_{2}}{{\rho }_{2}}g}}$
$\Rightarrow \dfrac{{{h}_{1}}}{{{h}_{2}}}=\dfrac{{{S}_{1}}}{{{S}_{2}}}\times \dfrac{\cos {{\theta }_{1}}}{\cos {{\theta }_{2}}}\times \dfrac{{{r}_{2}}}{{{r}_{1}}}\times \dfrac{{{\rho }_{2}}}{{{\rho }_{1}}}$
$\Rightarrow \dfrac{{{r}_{2}}}{{{r}_{1}}}=\dfrac{{{h}_{1}}}{{{h}_{2}}}\times \dfrac{{{S}_{2}}}{{{S}_{1}}}\times \dfrac{\cos {{\theta }_{2}}}{\cos {{\theta }_{1}}}\times \dfrac{{{\rho }_{1}}}{{{\rho }_{2}}}$
Substituting the values of the above ratios, we get –
$\dfrac{r_2}{r_1} = ( - 1) \times 7.5 \times \dfrac{{\cos ({{135}^\circ })}}{{\cos ({0^\circ })}} \times \dfrac{1}{{13.6}} = \dfrac{{7.5}}{{\sqrt 2 \times 13.6}} = 0.39$
$\therefore \dfrac{{{r_2}}}{{{r_1}}} = 0.39 \approx \dfrac{2}{5}$
The ratio, $\left( {\dfrac{{{r_2}}}{{{r_1}}}} \right)$, is approximately equal to $\dfrac{2}{5}$.
Hence, the correct option is Option C.
Note: The contact angle for water and mercury are \[{0^ \circ }\] and \[{135^ \circ }\] respectively. So, while finding the cosine term present in the height expression, a negative sign arises for mercury. Physically this means that instead of increasing, the height of mercury decreases inside the capillary tube.
Formula used:
Height of liquid column raised by surface tension is given by:
$h = \dfrac{{2S\cos \theta }}{{r\rho g}}$....................(1)
Where,
h is the height of the liquid column,
S is surface tension,
$\theta $ is the contact angle,
r is the radius of the capillary tube,
Complete step by step answer:
Given,
Ratio of surface tension for mercury and water is 7.5, i.e. $\dfrac{{{S_2}}}{{{S_1}}} = 7.5 = \dfrac{{15}}{2}$.
Contact angles of mercury and water are ${\theta _2} = {135^ \circ }$ and ${\theta _1} = {0^ \circ }$ respectively.
Ratio of their density is 13.6.
Thus, ratio is given by
$\dfrac{{{\rho _2}}}{{{\rho _1}}} = 13.6$
Therefore,
Height raised in the water column is the same as the height dip of the mercury column. Hence, $\dfrac{{{h_1}}}{{{h_2}}} = - 1$.
To find:
Value of the ratio $\dfrac{{{r_2}}}{{{r_1}}}$.
Substituting the expression for height of the liquid column in the ratio of their heights and rearranging, we obtain –
$\dfrac{{{h}_{1}}}{{{h}_{2}}}=\dfrac{\dfrac{2{{S}_{1}}\cos {{\theta }_{1}}}{{{r}_{1}}{{\rho }_{1}}g}}{\dfrac{2{{S}_{2}}\cos {{\theta }_{2}}}{{{r}_{2}}{{\rho }_{2}}g}}$
$\Rightarrow \dfrac{{{h}_{1}}}{{{h}_{2}}}=\dfrac{{{S}_{1}}}{{{S}_{2}}}\times \dfrac{\cos {{\theta }_{1}}}{\cos {{\theta }_{2}}}\times \dfrac{{{r}_{2}}}{{{r}_{1}}}\times \dfrac{{{\rho }_{2}}}{{{\rho }_{1}}}$
$\Rightarrow \dfrac{{{r}_{2}}}{{{r}_{1}}}=\dfrac{{{h}_{1}}}{{{h}_{2}}}\times \dfrac{{{S}_{2}}}{{{S}_{1}}}\times \dfrac{\cos {{\theta }_{2}}}{\cos {{\theta }_{1}}}\times \dfrac{{{\rho }_{1}}}{{{\rho }_{2}}}$
Substituting the values of the above ratios, we get –
$\dfrac{r_2}{r_1} = ( - 1) \times 7.5 \times \dfrac{{\cos ({{135}^\circ })}}{{\cos ({0^\circ })}} \times \dfrac{1}{{13.6}} = \dfrac{{7.5}}{{\sqrt 2 \times 13.6}} = 0.39$
$\therefore \dfrac{{{r_2}}}{{{r_1}}} = 0.39 \approx \dfrac{2}{5}$
The ratio, $\left( {\dfrac{{{r_2}}}{{{r_1}}}} \right)$, is approximately equal to $\dfrac{2}{5}$.
Hence, the correct option is Option C.
Note: The contact angle for water and mercury are \[{0^ \circ }\] and \[{135^ \circ }\] respectively. So, while finding the cosine term present in the height expression, a negative sign arises for mercury. Physically this means that instead of increasing, the height of mercury decreases inside the capillary tube.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Other Pages
Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Average and RMS Value in Electrical Circuits

NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Understanding Excess Pressure Inside a Liquid Drop

