
The reading of a meter which reads pressure is fitted in a closed pipe is $\text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N}{{\text{m}}^{-2}}$ on the opening the value of the pipe, the reading of that meter reduces to $\text{5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{5}}}\text{N}{{\text{m}}^{-2}}$. The speed of water flowing in the pipe is?
Answer
218.7k+ views
Hint: In order to solve this question we will apply Bernoulli's principle when the pipe was closed and after it was opened. Only the value of the initial and final pressure is given in the question. It is to be assumed that the atmospheric pressure remains constant. Bernoulli’s equation can be summarized as the total pressure is the sum of static pressure and dynamic pressure.
Formula used:
${{\text{P}}_{\text{i}}}\ \text{=}\ {{\text{P}}_{\text{f}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}^{\text{2}}}$
Here ${{\text{P}}_{\text{i}}}$ is a Initial static pressure
${{\text{P}}_{\text{f}}}$ is a final pressure
$\text{P}$ is the density of water
$\text{V}$ is the velocity of water.
Complete step by step solution:
Using Bernoulli’s principle we get
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}\ \ \text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\left( \text{1} \right)$
Initially the value is closed, so velocity of water I.e. ${{\text{V}}_{\text{1}}}\text{=0}$
$\text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{=}\ {{\text{h}}_{\text{2}\ }}\ \text{=0}$
Both are flowing at same reference point

Now, putting the value ${{\text{V}}_{\text{1}}}\text{=}\ \text{0}\ \text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}}}\text{=}{{\text{h}}_{\text{2}\ }}\text{=0}$
We get,
${{\text{P}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
Here ${{\text{P}}_{\text{1}}}$ is the initial pressure
${{\text{P}}_{\text{2}}}$ is the final pressure when the valve is open
So, further
$\Rightarrow {{\text{P}}_{\text{1}}}\text{=}{{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( {{\text{P}}_{\text{1}}}\text{-}{{\text{P}}_{\text{2}}} \right)}{\text{P}}$
Here $\text{ }\!\!\rho\!\!\text{ }\ \text{=}\ \text{1000kg/}{{\text{m}}^{\text{3}}}$
${{\text{P}}_{\text{1}}}\ \text{=}\ \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{P}}_{\text{2}}}\ \text{=}\ \text{5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{-5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}} \right)}{\text{1}{{\text{0}}^{\text{3}}}}$
$=\ \dfrac{2\left( 0.5\times {{10}^{15}} \right)}{{{10}^{3}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\text{=}\dfrac{\text{1}{{\text{0}}^{\text{15}}}}{\text{1}{{\text{0}}^{\text{3}}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{15-3}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{12}}}$
So,
${{\text{V}}_{\text{2}}}\text{=}\ \text{1}{{\text{0}}^{\text{6}}}\text{m/s}$
So, the speed of the water is $\text{1}{{\text{0}}^{\text{6}}}\text{m/s}$.
Note: Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid’s potential energy.
Principle: Within a horizontal flow of fluid, points of higher fluid speed will have less pressure than points of slower fluid speed.
Here is a way to express kinetic energy is to do work on it.
This is expressed by the work energy principle
$\text{ }\!\!\Delta\!\!\text{ }{{\text{W}}_{\text{external}}}\ \text{= }\!\!\Delta\!\!\text{ K}\ \text{=}\ \dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{f}}}^{\text{2}}\text{-}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{i}}}^{\text{2}}$
Bernoulli’s equation is usually used in isentropic fluids.
In order to solve we have to use Bernoulli’s equation which is given by
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}$
Here the value is closed initially so ${{\text{V}}_{\text{1}\ }}\text{=0 }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{ }\!\!\And\!\!\text{ }{{\text{h}}_{\text{2}\ }}\text{=0,}$ So, by putting these values we can do this question.
Formula used:
${{\text{P}}_{\text{i}}}\ \text{=}\ {{\text{P}}_{\text{f}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}^{\text{2}}}$
Here ${{\text{P}}_{\text{i}}}$ is a Initial static pressure
${{\text{P}}_{\text{f}}}$ is a final pressure
$\text{P}$ is the density of water
$\text{V}$ is the velocity of water.
Complete step by step solution:
Using Bernoulli’s principle we get
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}\ \ \text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\left( \text{1} \right)$
Initially the value is closed, so velocity of water I.e. ${{\text{V}}_{\text{1}}}\text{=0}$
$\text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{=}\ {{\text{h}}_{\text{2}\ }}\ \text{=0}$
Both are flowing at same reference point

Now, putting the value ${{\text{V}}_{\text{1}}}\text{=}\ \text{0}\ \text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}}}\text{=}{{\text{h}}_{\text{2}\ }}\text{=0}$
We get,
${{\text{P}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
Here ${{\text{P}}_{\text{1}}}$ is the initial pressure
${{\text{P}}_{\text{2}}}$ is the final pressure when the valve is open
So, further
$\Rightarrow {{\text{P}}_{\text{1}}}\text{=}{{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( {{\text{P}}_{\text{1}}}\text{-}{{\text{P}}_{\text{2}}} \right)}{\text{P}}$
Here $\text{ }\!\!\rho\!\!\text{ }\ \text{=}\ \text{1000kg/}{{\text{m}}^{\text{3}}}$
${{\text{P}}_{\text{1}}}\ \text{=}\ \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{P}}_{\text{2}}}\ \text{=}\ \text{5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{-5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}} \right)}{\text{1}{{\text{0}}^{\text{3}}}}$
$=\ \dfrac{2\left( 0.5\times {{10}^{15}} \right)}{{{10}^{3}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\text{=}\dfrac{\text{1}{{\text{0}}^{\text{15}}}}{\text{1}{{\text{0}}^{\text{3}}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{15-3}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{12}}}$
So,
${{\text{V}}_{\text{2}}}\text{=}\ \text{1}{{\text{0}}^{\text{6}}}\text{m/s}$
So, the speed of the water is $\text{1}{{\text{0}}^{\text{6}}}\text{m/s}$.
Note: Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid’s potential energy.
Principle: Within a horizontal flow of fluid, points of higher fluid speed will have less pressure than points of slower fluid speed.
Here is a way to express kinetic energy is to do work on it.
This is expressed by the work energy principle
$\text{ }\!\!\Delta\!\!\text{ }{{\text{W}}_{\text{external}}}\ \text{= }\!\!\Delta\!\!\text{ K}\ \text{=}\ \dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{f}}}^{\text{2}}\text{-}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{i}}}^{\text{2}}$
Bernoulli’s equation is usually used in isentropic fluids.
In order to solve we have to use Bernoulli’s equation which is given by
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}$
Here the value is closed initially so ${{\text{V}}_{\text{1}\ }}\text{=0 }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{ }\!\!\And\!\!\text{ }{{\text{h}}_{\text{2}\ }}\text{=0,}$ So, by putting these values we can do this question.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

