Answer
Verified
110.7k+ views
Hint: In order to solve this question we will apply Bernoulli's principle when the pipe was closed and after it was opened. Only the value of the initial and final pressure is given in the question. It is to be assumed that the atmospheric pressure remains constant. Bernoulli’s equation can be summarized as the total pressure is the sum of static pressure and dynamic pressure.
Formula used:
${{\text{P}}_{\text{i}}}\ \text{=}\ {{\text{P}}_{\text{f}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}^{\text{2}}}$
Here ${{\text{P}}_{\text{i}}}$ is a Initial static pressure
${{\text{P}}_{\text{f}}}$ is a final pressure
$\text{P}$ is the density of water
$\text{V}$ is the velocity of water.
Complete step by step solution:
Using Bernoulli’s principle we get
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}\ \ \text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\left( \text{1} \right)$
Initially the value is closed, so velocity of water I.e. ${{\text{V}}_{\text{1}}}\text{=0}$
$\text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{=}\ {{\text{h}}_{\text{2}\ }}\ \text{=0}$
Both are flowing at same reference point
Now, putting the value ${{\text{V}}_{\text{1}}}\text{=}\ \text{0}\ \text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}}}\text{=}{{\text{h}}_{\text{2}\ }}\text{=0}$
We get,
${{\text{P}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
Here ${{\text{P}}_{\text{1}}}$ is the initial pressure
${{\text{P}}_{\text{2}}}$ is the final pressure when the valve is open
So, further
$\Rightarrow {{\text{P}}_{\text{1}}}\text{=}{{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( {{\text{P}}_{\text{1}}}\text{-}{{\text{P}}_{\text{2}}} \right)}{\text{P}}$
Here $\text{ }\!\!\rho\!\!\text{ }\ \text{=}\ \text{1000kg/}{{\text{m}}^{\text{3}}}$
${{\text{P}}_{\text{1}}}\ \text{=}\ \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{P}}_{\text{2}}}\ \text{=}\ \text{5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{-5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}} \right)}{\text{1}{{\text{0}}^{\text{3}}}}$
$=\ \dfrac{2\left( 0.5\times {{10}^{15}} \right)}{{{10}^{3}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\text{=}\dfrac{\text{1}{{\text{0}}^{\text{15}}}}{\text{1}{{\text{0}}^{\text{3}}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{15-3}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{12}}}$
So,
${{\text{V}}_{\text{2}}}\text{=}\ \text{1}{{\text{0}}^{\text{6}}}\text{m/s}$
So, the speed of the water is $\text{1}{{\text{0}}^{\text{6}}}\text{m/s}$.
Note: Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid’s potential energy.
Principle: Within a horizontal flow of fluid, points of higher fluid speed will have less pressure than points of slower fluid speed.
Here is a way to express kinetic energy is to do work on it.
This is expressed by the work energy principle
$\text{ }\!\!\Delta\!\!\text{ }{{\text{W}}_{\text{external}}}\ \text{= }\!\!\Delta\!\!\text{ K}\ \text{=}\ \dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{f}}}^{\text{2}}\text{-}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{i}}}^{\text{2}}$
Bernoulli’s equation is usually used in isentropic fluids.
In order to solve we have to use Bernoulli’s equation which is given by
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}$
Here the value is closed initially so ${{\text{V}}_{\text{1}\ }}\text{=0 }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{ }\!\!\And\!\!\text{ }{{\text{h}}_{\text{2}\ }}\text{=0,}$ So, by putting these values we can do this question.
Formula used:
${{\text{P}}_{\text{i}}}\ \text{=}\ {{\text{P}}_{\text{f}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}^{\text{2}}}$
Here ${{\text{P}}_{\text{i}}}$ is a Initial static pressure
${{\text{P}}_{\text{f}}}$ is a final pressure
$\text{P}$ is the density of water
$\text{V}$ is the velocity of water.
Complete step by step solution:
Using Bernoulli’s principle we get
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}\ \ \text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\!\!\_\!\!\text{ }\left( \text{1} \right)$
Initially the value is closed, so velocity of water I.e. ${{\text{V}}_{\text{1}}}\text{=0}$
$\text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{=}\ {{\text{h}}_{\text{2}\ }}\ \text{=0}$
Both are flowing at same reference point
Now, putting the value ${{\text{V}}_{\text{1}}}\text{=}\ \text{0}\ \text{ }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}}}\text{=}{{\text{h}}_{\text{2}\ }}\text{=0}$
We get,
${{\text{P}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
Here ${{\text{P}}_{\text{1}}}$ is the initial pressure
${{\text{P}}_{\text{2}}}$ is the final pressure when the valve is open
So, further
$\Rightarrow {{\text{P}}_{\text{1}}}\text{=}{{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( {{\text{P}}_{\text{1}}}\text{-}{{\text{P}}_{\text{2}}} \right)}{\text{P}}$
Here $\text{ }\!\!\rho\!\!\text{ }\ \text{=}\ \text{1000kg/}{{\text{m}}^{\text{3}}}$
${{\text{P}}_{\text{1}}}\ \text{=}\ \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{P}}_{\text{2}}}\ \text{=}\ \text{5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{N/}{{\text{M}}^{\text{2}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\ \text{=}\ \dfrac{\text{2}\left( \text{5}\text{.5 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}}\text{-5}\text{.0 }\!\!\times\!\!\text{ 1}{{\text{0}}^{\text{15}}} \right)}{\text{1}{{\text{0}}^{\text{3}}}}$
$=\ \dfrac{2\left( 0.5\times {{10}^{15}} \right)}{{{10}^{3}}}$
${{\text{V}}_{\text{2}}}^{\text{2}}\text{=}\dfrac{\text{1}{{\text{0}}^{\text{15}}}}{\text{1}{{\text{0}}^{\text{3}}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{15-3}}}\ \text{=}\ \text{1}{{\text{0}}^{\text{12}}}$
So,
${{\text{V}}_{\text{2}}}\text{=}\ \text{1}{{\text{0}}^{\text{6}}}\text{m/s}$
So, the speed of the water is $\text{1}{{\text{0}}^{\text{6}}}\text{m/s}$.
Note: Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid’s potential energy.
Principle: Within a horizontal flow of fluid, points of higher fluid speed will have less pressure than points of slower fluid speed.
Here is a way to express kinetic energy is to do work on it.
This is expressed by the work energy principle
$\text{ }\!\!\Delta\!\!\text{ }{{\text{W}}_{\text{external}}}\ \text{= }\!\!\Delta\!\!\text{ K}\ \text{=}\ \dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{f}}}^{\text{2}}\text{-}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{V}}_{\text{i}}}^{\text{2}}$
Bernoulli’s equation is usually used in isentropic fluids.
In order to solve we have to use Bernoulli’s equation which is given by
${{\text{P}}_{\text{1}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{P}}_{\text{1}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{1}}}\ \text{=}\ {{\text{P}}_{\text{2}}}\text{+}\dfrac{\text{1}}{\text{2}}\text{ }\!\!\rho\!\!\text{ }{{\text{V}}_{\text{2}}}^{\text{2}}\text{+ }\!\!\rho\!\!\text{ g}{{\text{h}}_{\text{2}\ }}$
Here the value is closed initially so ${{\text{V}}_{\text{1}\ }}\text{=0 }\!\!\And\!\!\text{ }\ {{\text{h}}_{\text{1}\ }}\text{ }\!\!\And\!\!\text{ }{{\text{h}}_{\text{2}\ }}\text{=0,}$ So, by putting these values we can do this question.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main