The real number k for which the equation $2{x^3} + 3x + k = 0$, has two distinct real roots in [0, 1]
(A). Lies between 2 and 3
(B). Lies between 1 and 0
(C). Does not exist
(D). Lies between 1 and 2
Answer
Verified
116.4k+ views
Hint: Start by taking the given equation as function of x or f(x) and differentiate with respect to x . Check whether f’(x) obtained is increasing or decreasing , if it is increasing then it will have at most 1 real root.
Complete step-by-step answer:
Given, $2{x^3} + 3x + k = 0$
Let $f(x) = 2{x^3} + 3x + k$
Differentiating with respect to x , we get
Here we will use the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
$
f'(x) = 6{x^2} + 3 \\
f'(x) > 0 \\
$
As for any value of x, f’(x) can never be negative because of the square term involved.
f’(x) is a strictly increasing function and has at most 1 real root .
And we know , if a polynomial of odd degree, in this case it is 3, has exactly 1 real root.
So, f(x) = has exactly one real root.
We see that the results found do not satisfy the conditions.
Therefore, k does not exist.
So , option C is the correct answer.
Note: Students must know the principle of differentiation , nature of function , graph plotting etc in order to solve such similar problems. Questions can also be asked in such a manner which would demand the application of Lagrange’s mean value theorem(LMVT) , Intermediate value theorem(IVT) , Rolle’s theorem, and are recommended to be practised very well as they make the approach to the solution very easy meanwhile giving valuable information about the function too.
Complete step-by-step answer:
Given, $2{x^3} + 3x + k = 0$
Let $f(x) = 2{x^3} + 3x + k$
Differentiating with respect to x , we get
Here we will use the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
$
f'(x) = 6{x^2} + 3 \\
f'(x) > 0 \\
$
As for any value of x, f’(x) can never be negative because of the square term involved.
f’(x) is a strictly increasing function and has at most 1 real root .
And we know , if a polynomial of odd degree, in this case it is 3, has exactly 1 real root.
So, f(x) = has exactly one real root.
We see that the results found do not satisfy the conditions.
Therefore, k does not exist.
So , option C is the correct answer.
Note: Students must know the principle of differentiation , nature of function , graph plotting etc in order to solve such similar problems. Questions can also be asked in such a manner which would demand the application of Lagrange’s mean value theorem(LMVT) , Intermediate value theorem(IVT) , Rolle’s theorem, and are recommended to be practised very well as they make the approach to the solution very easy meanwhile giving valuable information about the function too.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics