Answer
Verified
109.2k+ views
Hint The reciprocal of impedance is admittance. The mathematical expression for admittance is: $Y = \dfrac{1}{Z}$ where, Z is the impedance. Unit of impedance is ohm, $\Omega $ and the unit of admittance is mho,\[\mho \].
Complete step by step solution
In quantitative terms, in a two terminal electronic circuit, the ratio of the complex representation of a sinusoidal voltage,$V = |V|{e^{i(\omega t + {\phi _V})}}$ between the two terminals of the circuit and the complex representation of current, $I = |I|{e^{i(\omega t + {\phi _I})}}$flowing through the two terminals is termed as impedance, Z. In polar form, it is represented as $Z = \left| Z \right|{e^{i\theta }}{\text{ or as }}\left| Z \right|\angle \theta $ where, $\left| Z \right|$represents magnitude of impedance, Z and $\theta $represents argument of the complex number, Z. In Cartesian form, impedance is represented as $Z = R + iX$ where R is the resistance in the circuit and X is the reactance in the circuit.
Impedance has the same units as resistance, SI unit is ohm ($\Omega $). But, resistance is simply the ratio of voltage and current in an electric circuit, i.e. $R = \dfrac{V}{I}$ whereas, impedance is a complex ratio.
Admittance for an electric circuit is defined as the reciprocal of the impedance, i.e.$Y = \dfrac{1}{Z}$. The unit for admittance is Siemens or mho (\[\mho \]).
Therefore, option (A) is correct.
Note Qualitatively, impedance is the measure of the opposition to the flow of electric current in a circuit whereas admittance is the measure of how easily a circuit allows electric current to flow through it. So, there is an inverse dependence.
Complete step by step solution
In quantitative terms, in a two terminal electronic circuit, the ratio of the complex representation of a sinusoidal voltage,$V = |V|{e^{i(\omega t + {\phi _V})}}$ between the two terminals of the circuit and the complex representation of current, $I = |I|{e^{i(\omega t + {\phi _I})}}$flowing through the two terminals is termed as impedance, Z. In polar form, it is represented as $Z = \left| Z \right|{e^{i\theta }}{\text{ or as }}\left| Z \right|\angle \theta $ where, $\left| Z \right|$represents magnitude of impedance, Z and $\theta $represents argument of the complex number, Z. In Cartesian form, impedance is represented as $Z = R + iX$ where R is the resistance in the circuit and X is the reactance in the circuit.
Impedance has the same units as resistance, SI unit is ohm ($\Omega $). But, resistance is simply the ratio of voltage and current in an electric circuit, i.e. $R = \dfrac{V}{I}$ whereas, impedance is a complex ratio.
Admittance for an electric circuit is defined as the reciprocal of the impedance, i.e.$Y = \dfrac{1}{Z}$. The unit for admittance is Siemens or mho (\[\mho \]).
Therefore, option (A) is correct.
Note Qualitatively, impedance is the measure of the opposition to the flow of electric current in a circuit whereas admittance is the measure of how easily a circuit allows electric current to flow through it. So, there is an inverse dependence.
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main