
The relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\] is correctly shown as:
This question has multiple correct options
(A) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}\]
(B) \[{{K}_{p}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
(C) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}\]
(D) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Answer
138.6k+ views
Hint: Here we know that \[{{K}_{c}}\] and \[{{K}_{p}}\] are equilibrium constants of gaseous mixture. Here \[{{K}_{c}}\] is for molar concentration and \[{{K}_{p}}\] is for partial pressure of the gases inside a closed system.
Step by step solution:
\[{{K}_{c}}\]and \[{{K}_{p}}\] are the equilibrium constants of gaseous mixtures. Where
\[{{K}_{c}}\] is defined by molar concentration
\[{{K}_{p}}\] is defined by partial pressure.
Let’s consider a reversible reaction:
\[aA+bB\underset{{}}{\leftrightarrows}cC+dD\]
Now equilibrium constant for the reaction expressed in the terms of concentration:
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
If the equilibrium reaction involves gaseous species. The equilibrium constant in terms of partial pressures is:
\[{{K}_{p}}=\dfrac{{{[pC]}^{c}}{{[pD]}^{d}}}{{{[pA]}^{a}}{{[pB]}^{b}}}\]
And the ideal gas equation:
\[pV=nRT\]
By rearrangement:
\[p=\dfrac{nRT}{V}=CRT\]
So, from the ideal gas equation:
\[pA\text{ }=\text{ }\left[ A \right]\text{ }RT\],\[\text{ }pB\text{ }=\text{ }\left[ B \right]\text{ }RT\],\[\text{ }pC\text{ }=\text{ }\left[ C \right]\text{ }RT\] and \[\text{ }pD\text{ }=\text{ }\left[ D \right]\text{ }RT\]
Now we will put all these values of partial pressure in the equation of \[{{K}_{p}}\]:
\[{{K}_{p}}=\dfrac{{{(\left[ C \right]\text{ }RT)}^{c}}{{(\left[ D \right]\text{ }RT)}^{d}}}{{{(\left[ A \right]\text{ }RT)}^{a}}{{(\left[ B \right]\text{ }RT)}^{b}}}\]
By rearranging the equation and putting\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]:
\[{{K}_{p}}=\dfrac{{{\left[ C \right]}^{c}}{{\text{(}RT)}^{c}}{{\left[ D \right]}^{d}}{{(RT)}^{d}}}{{{\left[ A \right]}^{a}}{{\text{(}RT)}^{a}}{{\left[ B \right]}^{b}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}\dfrac{{{\text{(}RT)}^{c}}{{(RT)}^{d}}}{{{\text{(}RT)}^{a}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{(c+d)-(a+b)}}\]’
Let \[\Delta n=(c+d)-(a+b)\]
Then,
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
So, from the above derivation we can say that the correct relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\]: \[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
And \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Then the correct answer is option “D”.
Note: The equilibrium constants do not include the concentrations of single components such as liquids and solid, and they do not have any units. These constants are only for ideal gases.
Step by step solution:
\[{{K}_{c}}\]and \[{{K}_{p}}\] are the equilibrium constants of gaseous mixtures. Where
\[{{K}_{c}}\] is defined by molar concentration
\[{{K}_{p}}\] is defined by partial pressure.
Let’s consider a reversible reaction:
\[aA+bB\underset{{}}{\leftrightarrows}cC+dD\]
Now equilibrium constant for the reaction expressed in the terms of concentration:
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
If the equilibrium reaction involves gaseous species. The equilibrium constant in terms of partial pressures is:
\[{{K}_{p}}=\dfrac{{{[pC]}^{c}}{{[pD]}^{d}}}{{{[pA]}^{a}}{{[pB]}^{b}}}\]
And the ideal gas equation:
\[pV=nRT\]
By rearrangement:
\[p=\dfrac{nRT}{V}=CRT\]
So, from the ideal gas equation:
\[pA\text{ }=\text{ }\left[ A \right]\text{ }RT\],\[\text{ }pB\text{ }=\text{ }\left[ B \right]\text{ }RT\],\[\text{ }pC\text{ }=\text{ }\left[ C \right]\text{ }RT\] and \[\text{ }pD\text{ }=\text{ }\left[ D \right]\text{ }RT\]
Now we will put all these values of partial pressure in the equation of \[{{K}_{p}}\]:
\[{{K}_{p}}=\dfrac{{{(\left[ C \right]\text{ }RT)}^{c}}{{(\left[ D \right]\text{ }RT)}^{d}}}{{{(\left[ A \right]\text{ }RT)}^{a}}{{(\left[ B \right]\text{ }RT)}^{b}}}\]
By rearranging the equation and putting\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]:
\[{{K}_{p}}=\dfrac{{{\left[ C \right]}^{c}}{{\text{(}RT)}^{c}}{{\left[ D \right]}^{d}}{{(RT)}^{d}}}{{{\left[ A \right]}^{a}}{{\text{(}RT)}^{a}}{{\left[ B \right]}^{b}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}\dfrac{{{\text{(}RT)}^{c}}{{(RT)}^{d}}}{{{\text{(}RT)}^{a}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{(c+d)-(a+b)}}\]’
Let \[\Delta n=(c+d)-(a+b)\]
Then,
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
So, from the above derivation we can say that the correct relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\]: \[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
And \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Then the correct answer is option “D”.
Note: The equilibrium constants do not include the concentrations of single components such as liquids and solid, and they do not have any units. These constants are only for ideal gases.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry
