Answer
Verified
397.9k+ views
Hint: Before we understand about these processes, it is important to understand the significance of the term slope. The slope represents the steepness of the curve, which is represented by the ratio of how high the curve is moving to the width of the curve. Hence, if we draw a tangent at the curve, the slope is given by tan of the angle made by the tangent with the horizontal.
The slope of the tangent drawn to a curve is equal to the derivative of the curve at the point where it touches the curve. Thus,
$Slope = \tan \theta = \dfrac{{dy}}{{dx}}$
Complete step by step answer:
Let us understand the meaning of the isothermal and adiabatic process in a thermodynamic system.
Isothermal process is a process that takes place in the system under constant temperature. The equation that represents an isothermal process is –
$PV = C$
where P = pressure and V = volume and C = constant
Adiabatic process is a process which takes place with zero heat transfer from the system or surroundings. The equation that represents an adiabatic process is –
$P{V^\gamma } = C$
where C = constant and $\gamma $ is the ratio of specific heats calculated at constant pressure and constant volume.
$\gamma = \dfrac{{{C_p}}}{{{C_v}}}$
Plotting these two processes on a pressure v/s volume graph, we obtain as follows:
The red curve represents the isothermal process and the blue curve represents the adiabatic process. A and B are the slopes of the isothermal and adiabatic curves respectively. We can see from the graph, that the slope of adiabatic is higher than that of the isothermal process.Let us prove that.
If we differentiate the equation of the isothermal process, we obtain the slope of the line B in the above graph.
$PV = C$
Differentiating with respect to V,
$V\dfrac{{dP}}{{dV}} + P\dfrac{{dV}}{{dV}} = 0$
$ \Rightarrow V\dfrac{{dP}}{{dV}} = - P\dfrac{{dV}}{{dV}}$
$ \Rightarrow \dfrac{{dP}}{{dV}} = - \dfrac{P}{V}$
Hence, the slope of line A = $ - \dfrac{P}{V}$
Similarly, differentiating the equation for adiabatic process, we get the slope of line B.
$P{V^\gamma } = C$
Differentiating with respect to V,
$P\dfrac{{d\left( {{V^\gamma }} \right)}}{{dV}} + {V^\gamma }\dfrac{{dP}}{{dV}} = 0$
$ \Rightarrow {V^\gamma }\dfrac{{dP}}{{dV}} = - P\dfrac{{d\left( {{V^\gamma }} \right)}}{{dV}}$
$ \Rightarrow {V^\gamma }\dfrac{{dP}}{{dV}} = - P\gamma {V^{\gamma - 1}}$
\[\Rightarrow \dfrac{{dP}}{{dV}} = \dfrac{{ - P\gamma {V^{\gamma - 1}}}}{{{V^\gamma }}} = - P\gamma {V^{\gamma - 1 - \gamma }} = - P\gamma {V^{ - 1}}\]
\[\therefore \dfrac{{dP}}{{dV}} = - \gamma \dfrac{P}{V}\]
Comparing the slopes, we see that the slope of the adiabatic curve is $\gamma $ times the slope of the isothermal curve.
Hence, the correct option is Option C.
Note: The value $\gamma $ is referred to as the adiabatic index. If nothing is given, the value of adiabatic index for normal conditions of air should be taken as 1.4 approximately, while solving problems in adiabatic processes.
The slope of the tangent drawn to a curve is equal to the derivative of the curve at the point where it touches the curve. Thus,
$Slope = \tan \theta = \dfrac{{dy}}{{dx}}$
Complete step by step answer:
Let us understand the meaning of the isothermal and adiabatic process in a thermodynamic system.
Isothermal process is a process that takes place in the system under constant temperature. The equation that represents an isothermal process is –
$PV = C$
where P = pressure and V = volume and C = constant
Adiabatic process is a process which takes place with zero heat transfer from the system or surroundings. The equation that represents an adiabatic process is –
$P{V^\gamma } = C$
where C = constant and $\gamma $ is the ratio of specific heats calculated at constant pressure and constant volume.
$\gamma = \dfrac{{{C_p}}}{{{C_v}}}$
Plotting these two processes on a pressure v/s volume graph, we obtain as follows:
The red curve represents the isothermal process and the blue curve represents the adiabatic process. A and B are the slopes of the isothermal and adiabatic curves respectively. We can see from the graph, that the slope of adiabatic is higher than that of the isothermal process.Let us prove that.
If we differentiate the equation of the isothermal process, we obtain the slope of the line B in the above graph.
$PV = C$
Differentiating with respect to V,
$V\dfrac{{dP}}{{dV}} + P\dfrac{{dV}}{{dV}} = 0$
$ \Rightarrow V\dfrac{{dP}}{{dV}} = - P\dfrac{{dV}}{{dV}}$
$ \Rightarrow \dfrac{{dP}}{{dV}} = - \dfrac{P}{V}$
Hence, the slope of line A = $ - \dfrac{P}{V}$
Similarly, differentiating the equation for adiabatic process, we get the slope of line B.
$P{V^\gamma } = C$
Differentiating with respect to V,
$P\dfrac{{d\left( {{V^\gamma }} \right)}}{{dV}} + {V^\gamma }\dfrac{{dP}}{{dV}} = 0$
$ \Rightarrow {V^\gamma }\dfrac{{dP}}{{dV}} = - P\dfrac{{d\left( {{V^\gamma }} \right)}}{{dV}}$
$ \Rightarrow {V^\gamma }\dfrac{{dP}}{{dV}} = - P\gamma {V^{\gamma - 1}}$
\[\Rightarrow \dfrac{{dP}}{{dV}} = \dfrac{{ - P\gamma {V^{\gamma - 1}}}}{{{V^\gamma }}} = - P\gamma {V^{\gamma - 1 - \gamma }} = - P\gamma {V^{ - 1}}\]
\[\therefore \dfrac{{dP}}{{dV}} = - \gamma \dfrac{P}{V}\]
Comparing the slopes, we see that the slope of the adiabatic curve is $\gamma $ times the slope of the isothermal curve.
Hence, the correct option is Option C.
Note: The value $\gamma $ is referred to as the adiabatic index. If nothing is given, the value of adiabatic index for normal conditions of air should be taken as 1.4 approximately, while solving problems in adiabatic processes.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main