Answer
Verified
99.9k+ views
Hint Let R be the distance between the center of earth and the surface of the sun and let \[{R_e}\]be the radius of the earth. Now, use the energy received per unit area on earth’s surface formula to find the relation.
Complete Step By Step Solution
Let us draw the given scenario in a simple diagram. The sun rays hit the earth across its center and tangent points. Let R be the distance between the surface of the sun and the centre of the earth. Now, \[{R_e}\] is the radius of the earth. The sun rays subtend an angle \[\theta \], with respect to R. The image is shown below:
Now, Solar energy received per unit area is defined as the amount of solar energy received over the earth’s surface from the sun. Solar constant is defined as the ratio between the power received from the sun and the square of the distance between sun and center of the earth. Mathematically, given as
\[S = \dfrac{P}{{4\pi {R^2}}}\]
Power radiated by the sun is mathematically given as
\[P = {A_s} \times \sigma {T^4}\], where A is area of the sun, T is temperature on the surface of the sun and \[\sigma \] is Stefan-Boltzmann constant
Substituting P on the above formula we get,
\[ \Rightarrow S = \dfrac{{4\pi {R_s}^2 \times \sigma {T^4}}}{{4\pi {R^2}}}\]
Cancelling out the common terms, we get,
\[ \Rightarrow S = \dfrac{{{R_s}^2 \times \sigma {T^4}}}{{{R^2}}}\]
\[ \Rightarrow S \propto {T^4}\]
Thus, Option (A) is the correct answer for the given question.
Note The power radiated by the sun is defined as the product of power density of the sun’s rays and the total surface area of the sun. Since the sun is a star, the Stefan-Boltzmann law applies, which describes the power radiated by a black body with respect to its temperature.
Complete Step By Step Solution
Let us draw the given scenario in a simple diagram. The sun rays hit the earth across its center and tangent points. Let R be the distance between the surface of the sun and the centre of the earth. Now, \[{R_e}\] is the radius of the earth. The sun rays subtend an angle \[\theta \], with respect to R. The image is shown below:
Now, Solar energy received per unit area is defined as the amount of solar energy received over the earth’s surface from the sun. Solar constant is defined as the ratio between the power received from the sun and the square of the distance between sun and center of the earth. Mathematically, given as
\[S = \dfrac{P}{{4\pi {R^2}}}\]
Power radiated by the sun is mathematically given as
\[P = {A_s} \times \sigma {T^4}\], where A is area of the sun, T is temperature on the surface of the sun and \[\sigma \] is Stefan-Boltzmann constant
Substituting P on the above formula we get,
\[ \Rightarrow S = \dfrac{{4\pi {R_s}^2 \times \sigma {T^4}}}{{4\pi {R^2}}}\]
Cancelling out the common terms, we get,
\[ \Rightarrow S = \dfrac{{{R_s}^2 \times \sigma {T^4}}}{{{R^2}}}\]
\[ \Rightarrow S \propto {T^4}\]
Thus, Option (A) is the correct answer for the given question.
Note The power radiated by the sun is defined as the product of power density of the sun’s rays and the total surface area of the sun. Since the sun is a star, the Stefan-Boltzmann law applies, which describes the power radiated by a black body with respect to its temperature.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main