
The sound produced by a thunderstorm is heard $10\;s$ after the lightning is seen. The approximate distance of the thunder cloud:
Given speed of sound$ = 340\;m{s^{ - 1}}$
(A) $3.4\;Km$
(B) $340\;m$
(C) $3.4\;m$
(D) None of these
Answer
146.7k+ views
Hint: We know during a thunderstorm we first see the lightning and then we hear the sound of the thunderstorm. Here we hear the sound of the thunderstorm $10\;s$ after the lightning is seen. We are given the time and the velocity of the thunderstorm. We have to calculate the approximate distance travelled by the thunderstorm.
Complete step by step solution:
Though the thunder and lightning are produced at the same time, we see the lightning first and then we hear the thunder. This is because light travels faster than sound through air.
We know that the speed of light $c = 3 \times {10^8}m/s$
The speed of sound through air is given as, $v = 340m{s^{ - 1}}$
Therefore, the time $10\;s$ is taken by the sound to travel the distance between the origin of the thunderstorm and the observer.
We can calculate the distance travelled by the sound in the following steps,
Let the distance travelled by the sound be $s = vt$
The velocity of sound$v = 340m{s^{ - 1}}$
The time taken by the sound to travel the distance $t = 10s$
Substituting these values in the above equation, we get
$s = 340m/s \times 10s = 3400m = 3.4Km$
Therefore, the answer is: Option (A): $3.4\;Km$
Additional Information:
The sound waves will be propagating through gases only if the gas molecules collide with each other. These collisions will give rise to condensations and rarefactions. . Since the molecules in the liquid are more tightly packed than that of gases, the sound wave will travel at a much faster speed than through gases. The maximum speed of sound is attained when it travels through a solid.
Note:
Sound is propagated as transverse waves. Sound requires a medium to travel. The velocity of sound in a solid medium will be greater than that of the velocity of sound in the air. Sound travels faster in solids than through air. Another factor that affects the speed of sound through air is the temperature.
Complete step by step solution:
Though the thunder and lightning are produced at the same time, we see the lightning first and then we hear the thunder. This is because light travels faster than sound through air.
We know that the speed of light $c = 3 \times {10^8}m/s$
The speed of sound through air is given as, $v = 340m{s^{ - 1}}$
Therefore, the time $10\;s$ is taken by the sound to travel the distance between the origin of the thunderstorm and the observer.
We can calculate the distance travelled by the sound in the following steps,
Let the distance travelled by the sound be $s = vt$
The velocity of sound$v = 340m{s^{ - 1}}$
The time taken by the sound to travel the distance $t = 10s$
Substituting these values in the above equation, we get
$s = 340m/s \times 10s = 3400m = 3.4Km$
Therefore, the answer is: Option (A): $3.4\;Km$
Additional Information:
The sound waves will be propagating through gases only if the gas molecules collide with each other. These collisions will give rise to condensations and rarefactions. . Since the molecules in the liquid are more tightly packed than that of gases, the sound wave will travel at a much faster speed than through gases. The maximum speed of sound is attained when it travels through a solid.
Note:
Sound is propagated as transverse waves. Sound requires a medium to travel. The velocity of sound in a solid medium will be greater than that of the velocity of sound in the air. Sound travels faster in solids than through air. Another factor that affects the speed of sound through air is the temperature.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
