
The spatial distribution of the electric field due to two charges (A, B) is shown in figure. Which one of the following statements is correct?

(A ) is +ve and B -ve and \[\left| A \right|{\text{ }} > {\text{ }}\left| B \right|\]
(B) is +ve and B -ve and \[\left| A \right|{\text{ }} = {\text{ }}\left| B \right|\]
(C) Both are +ve but A > B
(D) Both are -ve but A > B
Answer
146.7k+ views
Hint Electric field lines originate from positive charge and settle down in negative charge. A positive and a negative charge is said to create its field around itself.
Complete step-by-step answer:
A single point charge will give out electric field lines, which move away from it till infinity. Similarly, a negative point charge will converge electric field lines coming towards it from infinity. Therefore A is a positive charge and B is a negative charge. Moving onto the second part, \[\left| A \right|\] and \[\left| B \right|\]. Magnitude of an electric charge is measured by the number of electric field lines converging or diverging from it. In our case, the number of electric field lines diverging from A is 12. Similarly for B, the number of electric field lines converging on it is also 12. Therefore, the numbers of electric field lines converging or diverging on the 2 charges are equal and hence their magnitude is also equal.
So, Option B is correct
Note Electric field lines do not form closed loops. They always end up or originate from a source of charge. Also electric field lines do not interfere. If they do, there will be 2 directions of electric field which is not possible.
Complete step-by-step answer:
A single point charge will give out electric field lines, which move away from it till infinity. Similarly, a negative point charge will converge electric field lines coming towards it from infinity. Therefore A is a positive charge and B is a negative charge. Moving onto the second part, \[\left| A \right|\] and \[\left| B \right|\]. Magnitude of an electric charge is measured by the number of electric field lines converging or diverging from it. In our case, the number of electric field lines diverging from A is 12. Similarly for B, the number of electric field lines converging on it is also 12. Therefore, the numbers of electric field lines converging or diverging on the 2 charges are equal and hence their magnitude is also equal.
So, Option B is correct
Note Electric field lines do not form closed loops. They always end up or originate from a source of charge. Also electric field lines do not interfere. If they do, there will be 2 directions of electric field which is not possible.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE
