
The specific gravity of the stainless-steel spherical balls used in ball-bearings are 10.2. How many iron atoms are present in each ball of diameter 1 cm if the balls contain 84 per iron by mass? The atomic mass of iron is 56.
(A) \[4.12 \times {10^{21}}\]
(B) \[4.82 \times {10^{22}}\]
(C) \[3.82 \times {10^{22}}\]
(D) None of these
Answer
138.9k+ views
Formula used: \[volume{\text{ }}of{\text{ }}sphere = \dfrac{4}{3}\pi {r^3}\], \[density = \dfrac{{mass}}{{volume}}\], \[specific{\text{ }}gravity{\text{ }}of{\text{ }}iron = \dfrac{{density{\text{ }}of{\text{ }}iron}}{{density{\text{ }}of{\text{ }}water}}\]and \[moles = \dfrac{{given{\text{ }}mass}}{{{\text{molar }}mass}}\]
Hint: Specific Gravity gives information about the weight and density of the object by comparing the weight, mass and density of the given object with water of the same amount at \[{4^0}C\]. The density thus calculated is used to get the atoms present by using volume and moles as well.
Complete step-by-step answer:
Specific gravity, also known as relative gravity is a dimensionless quantity which is defined as the ratio of the density of a substance to the density of a substance to the density of water at a specified pressure and temperature. It is a unitless quantity.
Since, \[Specific{\text{ }}gravity{\text{ }}of{\text{ }}iron = \dfrac{{Density{\text{ }}of{\text{ }}iron}}{{Density{\text{ }}of{\text{ }}water}}\]
Putting the value of specific gravity of iron and density of water (1 g/ml) in it, we get the density of iron,
\[10.2\] = \[\dfrac{\rm{Density \space of \space iron}}{1}\]
\[\therefore \]density of iron is \[10.2\] g/ml
As the diameter given is 1cm, the radius of the sphere is \[0.5\]cm. So,
Volume of the sphere = \[\dfrac{4}{3}\pi {r^3}\]
= \[\dfrac{4}{3} \times 3.14 \times {(0.5)^3}\]
= \[0.52\]\[c{m^3}\]
From the formula of density, we get
Mass = Density \[ \times \]Volume
= \[10.2\]\[ \times \]\[0.52\] = \[5.34\] g
Provided that atomic mass of iron is 56, so number of moles of iron can be determined by
\[Moles = \dfrac{{given{\text{ }}mass}}{{{\text{molar }}mass}}\]
= \[\dfrac{{5.34}}{{56}}\]= \[0.095\]
Given that the balls contain 84 percent iron by mass, the iron atoms present in it are
\[ = 0.84 \times 0.095 \times 6.022 \times {10^{23}}\]
=\[4.82 \times {10^{22}}\] iron atoms
Hence, the correct option is (B).
Note: Specific gravity tells us whether an object will float or sink.If the specific gravity of an element is greater than that of water i.e. 1, it will sink in the water. And if it is lower than 1, it will float on the water.
Hint: Specific Gravity gives information about the weight and density of the object by comparing the weight, mass and density of the given object with water of the same amount at \[{4^0}C\]. The density thus calculated is used to get the atoms present by using volume and moles as well.
Complete step-by-step answer:
Specific gravity, also known as relative gravity is a dimensionless quantity which is defined as the ratio of the density of a substance to the density of a substance to the density of water at a specified pressure and temperature. It is a unitless quantity.
Since, \[Specific{\text{ }}gravity{\text{ }}of{\text{ }}iron = \dfrac{{Density{\text{ }}of{\text{ }}iron}}{{Density{\text{ }}of{\text{ }}water}}\]
Putting the value of specific gravity of iron and density of water (1 g/ml) in it, we get the density of iron,
\[10.2\] = \[\dfrac{\rm{Density \space of \space iron}}{1}\]
\[\therefore \]density of iron is \[10.2\] g/ml
As the diameter given is 1cm, the radius of the sphere is \[0.5\]cm. So,
Volume of the sphere = \[\dfrac{4}{3}\pi {r^3}\]
= \[\dfrac{4}{3} \times 3.14 \times {(0.5)^3}\]
= \[0.52\]\[c{m^3}\]
From the formula of density, we get
Mass = Density \[ \times \]Volume
= \[10.2\]\[ \times \]\[0.52\] = \[5.34\] g
Provided that atomic mass of iron is 56, so number of moles of iron can be determined by
\[Moles = \dfrac{{given{\text{ }}mass}}{{{\text{molar }}mass}}\]
= \[\dfrac{{5.34}}{{56}}\]= \[0.095\]
Given that the balls contain 84 percent iron by mass, the iron atoms present in it are
\[ = 0.84 \times 0.095 \times 6.022 \times {10^{23}}\]
=\[4.82 \times {10^{22}}\] iron atoms
Hence, the correct option is (B).
Note: Specific gravity tells us whether an object will float or sink.If the specific gravity of an element is greater than that of water i.e. 1, it will sink in the water. And if it is lower than 1, it will float on the water.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry
