Answer
Verified
111.6k+ views
Hint We should know that tension is described as a pulling force which is transferred between the bodies in the form of axial ways. By axial ways we mean by string, a cable or a chain or it can be any one-dimensional object.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line