
The speed of a wave on a string is 150 m/s when the tension is 120 N. The percentage increase in the tension in order to raise the wave speed by 20 % is?
(A) 44 %
(B) 40 %
(C) 20 %
(D) 10 %
Answer
133.8k+ views
Hint We should know that tension is described as a pulling force which is transferred between the bodies in the form of axial ways. By axial ways we mean by string, a cable or a chain or it can be any one-dimensional object.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3
