
The speed of a wave on a string is 150 m/s when the tension is 120 N. The percentage increase in the tension in order to raise the wave speed by 20 % is?
(A) 44 %
(B) 40 %
(C) 20 %
(D) 10 %
Answer
232.5k+ views
Hint We should know that tension is described as a pulling force which is transferred between the bodies in the form of axial ways. By axial ways we mean by string, a cable or a chain or it can be any one-dimensional object.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Complete step by step answer
We know that:
$v = \sqrt {\dfrac{T}{m}}$
We can say that:
$v\propto \sqrt T$
$\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{{{T_1}}}{{{T_2}}}}$
$\Rightarrow \dfrac{{{T_1}}}{{{T_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}$
Now we have evaluated to get:
$\dfrac{{{T_2} - {T_1}}}{{{T_1}}} = \dfrac{{v_1^2 - v_1^2}}{{v_1^2}}$
$\Rightarrow {v_2} = {v_1} + \dfrac{{20}}{{100}}{v_1}$
$\Rightarrow {v_2} = \dfrac{{120}}{{100}}{v_1} = \dfrac{6}{5}{v_1}$
Now we have to put the value of ${v_1}$ to get: $\dfrac{6}{5} \times 100$
Now we can write:
$\dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{1}}}=\dfrac{{{(180)}^{2}}-{{(150)}^{2}}}{{{(150)}^{2}}}$
Now we have to evaluate to get:
$\dfrac{{30 \times 330}}{{150 \times 180}} = 0.47$
$\Rightarrow \dfrac{{{T_2} - {T_1}}}{{{T_1}}} \times 100 = 0.44 \times 100 = 44\%$
Hence, we can say that the percentage increase in the tension in order to raise the wave speed by 20 % is 44 %.
Hence the correct answer is option A.
Note We should know that the tension of a body is defined as being equal to the mass of the body multiplied by the gravitational force that is applied on the body plus or minus the mass multiplied by the acceleration. The value of g is taken as 9.8 m/$s^2$, in every case if it is not mentioned to us in the question.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

