
The standard deviation for variables x and y be $3$ and $4$ respectively and their covariance is $8$, then coefficient of correlation between them is:
A) $\dfrac{2}{3}$
B) $\dfrac{3}{{2\sqrt 2 }}$
C) $\dfrac{{2\sqrt 2 }}{3}$
D) $\dfrac{2}{9}$
Answer
142.2k+ views
Hint: The correlation coefficient is a statistical measure of the strength in relationship between the relative movements of two variables, for the given variables x and y the formula become coefficient of correlation = $\dfrac{{Cov(x,y)}}{{{\sigma _X}{\sigma _Y}}}$
Complete step by step solution:
As in the question we have to find coefficient of correlation, for this
The correlation coefficient is a statistical measure of the strength in relationship between the relative movements of two variables. The values range in between $ - 1$ and $1$ if the calculated number is greater than $1$ or less than $ - 1$ means that there is an error in the correlation measurement. A correlation of $ - 1$ shows a perfect negative correlation, while a correlation of $1$ shows a perfect positive correlation. A correlation of $0$ shows no linear relationship between the movement of the two variables.
To calculate the product-moment correlation, one must first determine the covariance of the two variables in question. Next, one must calculate each variable's standard deviation. The correlation coefficient is determined by dividing the covariance by the product of the two variables' standard deviations.
So the relation is
Coefficient of correlation = $\dfrac{{Cov(x,y)}}{{{\sigma _X}{\sigma _Y}}}$
where
$Cov(x,y)$ is covariance of x and y that is \[8\]
${\sigma _X}$ is standard deviation of x that is $3$
${\sigma _y}$ is standard deviation of x that is $4$
Hence on putting the value of these ,
Coefficient of correlation = $\dfrac{8}{{3 \times 4}}$
Hence it is equal to the $\dfrac{2}{3}$
Option A will be the correct answer.
Note:Correlation coefficients are used to measure the strength of the relationship between two variables. Pearson correlation is the one most commonly used in statistics. This measures the strength and direction of a linear relationship between two variables that we use in this question.
Correlation coefficient values less than $0.8$ or greater than $ - 0.8$ are not considered significant.
Complete step by step solution:
As in the question we have to find coefficient of correlation, for this
The correlation coefficient is a statistical measure of the strength in relationship between the relative movements of two variables. The values range in between $ - 1$ and $1$ if the calculated number is greater than $1$ or less than $ - 1$ means that there is an error in the correlation measurement. A correlation of $ - 1$ shows a perfect negative correlation, while a correlation of $1$ shows a perfect positive correlation. A correlation of $0$ shows no linear relationship between the movement of the two variables.
To calculate the product-moment correlation, one must first determine the covariance of the two variables in question. Next, one must calculate each variable's standard deviation. The correlation coefficient is determined by dividing the covariance by the product of the two variables' standard deviations.
So the relation is
Coefficient of correlation = $\dfrac{{Cov(x,y)}}{{{\sigma _X}{\sigma _Y}}}$
where
$Cov(x,y)$ is covariance of x and y that is \[8\]
${\sigma _X}$ is standard deviation of x that is $3$
${\sigma _y}$ is standard deviation of x that is $4$
Hence on putting the value of these ,
Coefficient of correlation = $\dfrac{8}{{3 \times 4}}$
Hence it is equal to the $\dfrac{2}{3}$
Option A will be the correct answer.
Note:Correlation coefficients are used to measure the strength of the relationship between two variables. Pearson correlation is the one most commonly used in statistics. This measures the strength and direction of a linear relationship between two variables that we use in this question.
Correlation coefficient values less than $0.8$ or greater than $ - 0.8$ are not considered significant.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electron Gain Enthalpy and Electron Affinity for JEE

Electrical Field of Charged Spherical Shell - JEE
