
The temperature at which a black body of unit area loss its energy at the rate of 1 joule/second is:
(A) $-65^{\circ} \mathrm{C}$
(B) $65^{\circ} \mathrm{C}$
(C) 65 K
(D) None of these
Answer
128.4k+ views
Hint: We know that Planck’s radiation law, a mathematical relationship formulated in 1900 by German physicist Max Planck to explain the spectral-energy distribution of radiation emitted by a blackbody (a hypothetical body that completely absorbs all radiant energy falling upon it, reaches some equilibrium temperature, and then reemits. Blackbody, in physics, a surface that absorbs all radiant energy falling on it. The term arises because incident visible light will be absorbed rather than reflected, and therefore the surface will appear black.
Complete step by step answer
We know that black-body radiation has a characteristic, continuous frequency spectrum that depends only on the body's temperature, called the Planck spectrum or Planck's law. As the temperature increases past about 500 degrees Celsius, black bodies start to emit significant amounts of visible light. A black body is one that absorbs all the EM radiation light that strikes it. To stay in thermal equilibrium, it must emit radiation at the same rate as it absorbs it so a black body also radiates well.
Area is unity so $\mathrm{so} \mathrm{E}=\sigma \mathrm{T}^{4}$ which is $1 \mathrm{J} / \mathrm{s}$
So, we have ${{\text{T}}^{4}}=1/\sigma $
After we put the values we get:
$1 /\left(5.67 \times 10^{-8}\right)=1763.66 \times 10^{4}$
So $\mathrm{T}=64.8 \mathrm{K}$
Option c is correct.
Note: Thus, we conclude that blackbody refers to an opaque object that emits thermal radiation. A perfect blackbody is one that absorbs all incoming light and does not reflect any. At room temperature, such an object would appear to be perfectly black. A blackbody is defined as one that absorbs all incident radiation so that all the radiation that comes from its surface is its own emission. Since the intensity of the energy at any temperature and wavelength can be determined using the Planck Law of radiation. A blackbody radiation source with a known temperature, or, whose temperature can be measured, is usually used for calibrating and testing the radiation thermometers.
Complete step by step answer
We know that black-body radiation has a characteristic, continuous frequency spectrum that depends only on the body's temperature, called the Planck spectrum or Planck's law. As the temperature increases past about 500 degrees Celsius, black bodies start to emit significant amounts of visible light. A black body is one that absorbs all the EM radiation light that strikes it. To stay in thermal equilibrium, it must emit radiation at the same rate as it absorbs it so a black body also radiates well.
Area is unity so $\mathrm{so} \mathrm{E}=\sigma \mathrm{T}^{4}$ which is $1 \mathrm{J} / \mathrm{s}$
So, we have ${{\text{T}}^{4}}=1/\sigma $
After we put the values we get:
$1 /\left(5.67 \times 10^{-8}\right)=1763.66 \times 10^{4}$
So $\mathrm{T}=64.8 \mathrm{K}$
Option c is correct.
Note: Thus, we conclude that blackbody refers to an opaque object that emits thermal radiation. A perfect blackbody is one that absorbs all incoming light and does not reflect any. At room temperature, such an object would appear to be perfectly black. A blackbody is defined as one that absorbs all incident radiation so that all the radiation that comes from its surface is its own emission. Since the intensity of the energy at any temperature and wavelength can be determined using the Planck Law of radiation. A blackbody radiation source with a known temperature, or, whose temperature can be measured, is usually used for calibrating and testing the radiation thermometers.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Class 11 JEE Main Physics Mock Test 2025

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
