
The temperature of equal masses of three different liquids $A$, $B$ and $C$ are ${12^ \circ }\,C$, ${19^ \circ }\,C$ and ${28^ \circ }\,C$ respectively. The temperature when $A$ and $B$ are mixed is ${16^ \circ }\,C$ and when $B$ and $C$ are mixed is ${23^ \circ }\,C$. What is the temperature when $A$ and $C$ are mixed?
(A) ${18.2^ \circ }\,C$
(B) ${22^ \circ }\,C$
(C) ${20.3^ \circ }\,C$
(D) ${24.2^ \circ }\,C$
Answer
233.1k+ views
Hint: The equation shows the relationship between the heat energy and the temperature which are different for different materials and shows that the specific heat is a value and describes how they relate to the heat energy. By using the specific heat capacity formula, the temperature is determined.
Useful formula
Specific heat capacity formula,
$Q = mc\Delta T$
Where, $Q$ is the heat energy, $m$ is the mass of the substance, $c$ is the specific heat, $\Delta T$ is the temperature difference
Complete step by step solution
the data that are given in the problem is;
temperature of the liquid $A = {12^ \circ }\,C$
temperature of the liquid $B = {19^ \circ }\,C$
temperature of the liquid $C = {28^ \circ }\,C$
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
1. The liquids $A$ and $B$ are mixed together. Then, the final temperature is ${16^ \circ }\,C$.
When the liquids $A$ and $B$ are mixed together,
Heat gained by the liquid $A$ is equal to the heat loss by the liquid $B$
By using specific heat capacity formula,
${Q_A} = {Q_B}$
Where, ${Q_A}$ is the heat energy of liquid $A$, ${Q_B}$ is the heat energy of liquid $B$.
${Q_A} = {Q_B}$
${m_A}{c_A}\left( {16 - 12} \right) = {m_B}{c_B}\left( {19 - 16} \right)\,.............\left( 1 \right)$
Where, ${m_A}$ is the mass of the liquid $A$, ${c_A}$ is the specific heat of the liquid $A$,${m_B}$ is the mass of the liquid $B$, ${c_B}$ is the specific heat of the liquid $B$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (1) be changed as,
$m{c_A}\left( {16 - 12} \right) = m{c_B}\left( {19 - 16} \right)$
By cancelling the same term $m$ on both sides,
${c_A}\left( {16 - 12} \right) = {c_B}\left( {19 - 16} \right)$
On further simplifying,
$4{c_A} = 3{c_B}$
Therefore,
${c_B} = \dfrac{4}{3}{c_A}\,.............\left( 2 \right)$
2. The liquids $B$ and $C$ are mixed together. Then, the final temperature is ${23^ \circ }\,C$.
When the liquids $B$ and $C$ are mixed together,
Heat gained by the liquid $B$ is equal to the heat loss by the liquid $C$
By using specific heat capacity formula,
${Q_B} = {Q_C}$
Where, ${Q_B}$ is the heat energy of liquid $B$, ${Q_C}$ is the heat energy of liquid $C$.
${Q_B} = {Q_C}$
${m_B}{c_B}\left( {23 - 19} \right) = {m_C}{c_C}\left( {28 - 23} \right)\,.............\left( 3 \right)$
Where, ${m_B}$ is the mass of the liquid $B$, ${c_B}$ is the specific heat of the liquid $B$, ${m_C}$ is the mass of the liquid $C$, ${c_C}$ is the specific heat of the liquid $C$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (3) be changed as,
$m{c_B}\left( {23 - 19} \right) = m{c_C}\left( {28 - 23} \right)$
By cancelling the same term $m$ on both sides,
${c_B}\left( {23 - 19} \right) = {c_C}\left( {28 - 23} \right)$
On further simplifying,
$4{c_B} = 5{c_C}$
Therefore,
${c_C} = \dfrac{4}{5}{c_B}\,................\left( 4 \right)$
Substituting the equation (3) in equation (4), then,
${c_C} = \dfrac{4}{5} \times \dfrac{4}{3}{c_A}$
On multiplying,
${c_C} = \dfrac{{16}}{{15}}{c_A}\,...............\left( 5 \right)$
3. The liquids $A$ and $C$ are mixed together. Then, the final temperature is $T$.
Heat gained by the liquid $A$ is equal to the heat loss by the liquid $C$
By using specific heat capacity formula,
${Q_A} = {Q_C}$
Where, ${Q_A}$ is the heat energy of liquid $A$, ${Q_C}$ is the heat energy of liquid $C$
${Q_A} = {Q_C}$
${m_A}{c_A}\left( {T - 12} \right) = {m_C}{c_C}\left( {28 - T} \right)\,............\left( 6 \right)$
Where,${m_A}$ is the mass of the liquid $A$, ${c_A}$ is the specific heat of the liquid $A$, ${m_C}$ is the mass of the liquid $C$, ${c_C}$ is the specific heat of the liquid $C$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (6) be changed as,
$m{c_A}\left( {T - 12} \right) = m{c_C}\left( {28 - T} \right)$
By cancelling the same term $m$ on both sides,
${c_A}\left( {T - 12} \right) = {c_C}\left( {28 - T} \right)\,.................\left( 7 \right)$
On substituting the equation (5) in equation (7), then,
${c_A}\left( {T - 12} \right) = \dfrac{{16}}{{15}}{c_A} \times \left( {28 - T} \right)\,$
By cancelling the same terms on each side,
\[\left( {T - 12} \right) = \dfrac{{16}}{{15}}\left( {28 - T} \right)\,\]
On further,
\[15\left( {T - 12} \right) = 16\left( {28 - T} \right)\,\]
By multiplying,
$15T - 180 = 448 - 16T$
Takin the $T$ on one side and other terms in other side,
$15T + 16T = 448 + 180$
On further calculation,
$31T = 628$
Then,
$T = \dfrac{{628}}{{31}}$
On dividing,
$
T = {20.25^ \circ }\,C \\
T \simeq {20.3^ \circ }\,C \\
$
Thus, the temperature when $A$ and $C$ are mixed is ${20.3^ \circ }\,C$
Hence, the option (C) is correct.
Note: When the liquids are mixed together so the heat energy equation for the two liquids are equated. And all the three liquids are having the same mass then the mass value gets cancelled in the equations. The liquid $A$ and $C$ are mixed together then the final temperature is assumed as $T$.
Useful formula
Specific heat capacity formula,
$Q = mc\Delta T$
Where, $Q$ is the heat energy, $m$ is the mass of the substance, $c$ is the specific heat, $\Delta T$ is the temperature difference
Complete step by step solution
the data that are given in the problem is;
temperature of the liquid $A = {12^ \circ }\,C$
temperature of the liquid $B = {19^ \circ }\,C$
temperature of the liquid $C = {28^ \circ }\,C$
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
1. The liquids $A$ and $B$ are mixed together. Then, the final temperature is ${16^ \circ }\,C$.
When the liquids $A$ and $B$ are mixed together,
Heat gained by the liquid $A$ is equal to the heat loss by the liquid $B$
By using specific heat capacity formula,
${Q_A} = {Q_B}$
Where, ${Q_A}$ is the heat energy of liquid $A$, ${Q_B}$ is the heat energy of liquid $B$.
${Q_A} = {Q_B}$
${m_A}{c_A}\left( {16 - 12} \right) = {m_B}{c_B}\left( {19 - 16} \right)\,.............\left( 1 \right)$
Where, ${m_A}$ is the mass of the liquid $A$, ${c_A}$ is the specific heat of the liquid $A$,${m_B}$ is the mass of the liquid $B$, ${c_B}$ is the specific heat of the liquid $B$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (1) be changed as,
$m{c_A}\left( {16 - 12} \right) = m{c_B}\left( {19 - 16} \right)$
By cancelling the same term $m$ on both sides,
${c_A}\left( {16 - 12} \right) = {c_B}\left( {19 - 16} \right)$
On further simplifying,
$4{c_A} = 3{c_B}$
Therefore,
${c_B} = \dfrac{4}{3}{c_A}\,.............\left( 2 \right)$
2. The liquids $B$ and $C$ are mixed together. Then, the final temperature is ${23^ \circ }\,C$.
When the liquids $B$ and $C$ are mixed together,
Heat gained by the liquid $B$ is equal to the heat loss by the liquid $C$
By using specific heat capacity formula,
${Q_B} = {Q_C}$
Where, ${Q_B}$ is the heat energy of liquid $B$, ${Q_C}$ is the heat energy of liquid $C$.
${Q_B} = {Q_C}$
${m_B}{c_B}\left( {23 - 19} \right) = {m_C}{c_C}\left( {28 - 23} \right)\,.............\left( 3 \right)$
Where, ${m_B}$ is the mass of the liquid $B$, ${c_B}$ is the specific heat of the liquid $B$, ${m_C}$ is the mass of the liquid $C$, ${c_C}$ is the specific heat of the liquid $C$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (3) be changed as,
$m{c_B}\left( {23 - 19} \right) = m{c_C}\left( {28 - 23} \right)$
By cancelling the same term $m$ on both sides,
${c_B}\left( {23 - 19} \right) = {c_C}\left( {28 - 23} \right)$
On further simplifying,
$4{c_B} = 5{c_C}$
Therefore,
${c_C} = \dfrac{4}{5}{c_B}\,................\left( 4 \right)$
Substituting the equation (3) in equation (4), then,
${c_C} = \dfrac{4}{5} \times \dfrac{4}{3}{c_A}$
On multiplying,
${c_C} = \dfrac{{16}}{{15}}{c_A}\,...............\left( 5 \right)$
3. The liquids $A$ and $C$ are mixed together. Then, the final temperature is $T$.
Heat gained by the liquid $A$ is equal to the heat loss by the liquid $C$
By using specific heat capacity formula,
${Q_A} = {Q_C}$
Where, ${Q_A}$ is the heat energy of liquid $A$, ${Q_C}$ is the heat energy of liquid $C$
${Q_A} = {Q_C}$
${m_A}{c_A}\left( {T - 12} \right) = {m_C}{c_C}\left( {28 - T} \right)\,............\left( 6 \right)$
Where,${m_A}$ is the mass of the liquid $A$, ${c_A}$ is the specific heat of the liquid $A$, ${m_C}$ is the mass of the liquid $C$, ${c_C}$ is the specific heat of the liquid $C$.
All the three liquids are having the same mass, ${m_A} = {m_B} = {m_C} = m$.
Then, the equation (6) be changed as,
$m{c_A}\left( {T - 12} \right) = m{c_C}\left( {28 - T} \right)$
By cancelling the same term $m$ on both sides,
${c_A}\left( {T - 12} \right) = {c_C}\left( {28 - T} \right)\,.................\left( 7 \right)$
On substituting the equation (5) in equation (7), then,
${c_A}\left( {T - 12} \right) = \dfrac{{16}}{{15}}{c_A} \times \left( {28 - T} \right)\,$
By cancelling the same terms on each side,
\[\left( {T - 12} \right) = \dfrac{{16}}{{15}}\left( {28 - T} \right)\,\]
On further,
\[15\left( {T - 12} \right) = 16\left( {28 - T} \right)\,\]
By multiplying,
$15T - 180 = 448 - 16T$
Takin the $T$ on one side and other terms in other side,
$15T + 16T = 448 + 180$
On further calculation,
$31T = 628$
Then,
$T = \dfrac{{628}}{{31}}$
On dividing,
$
T = {20.25^ \circ }\,C \\
T \simeq {20.3^ \circ }\,C \\
$
Thus, the temperature when $A$ and $C$ are mixed is ${20.3^ \circ }\,C$
Hence, the option (C) is correct.
Note: When the liquids are mixed together so the heat energy equation for the two liquids are equated. And all the three liquids are having the same mass then the mass value gets cancelled in the equations. The liquid $A$ and $C$ are mixed together then the final temperature is assumed as $T$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

