Answer
Verified
99.9k+ views
Hint:If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The metal's threshold wavelength is the wavelength that corresponds to the minimal energy required to overcome the attractive attraction that binds the valence electron to the shell of the metal's atom. Because photon energy is inversely related to wavelength, the wavelength should be the highest permissible wavelength for a minimal value of energy.
For minimum conditions, the electron is just knocked out of the metal, i.e. the speed of the emitted electron is zero. Hence, the kinetic energy of the emitted electron is zero.
When the kinetic energy is zero, then the corresponding energy of the photon is called the work function of the metal.
The threshold wavelength is given as 6500 angstrom.
\[{\lambda _0} = 6500\mathop A\limits^ \circ \]
\[\Rightarrow {\lambda _0} = 6.5 \times {10^{ - 7}}m\]
Then the work function is,
\[\phi = \dfrac{{hc}}{{{\lambda _0}}} \\ \]
\[\Rightarrow \phi = \dfrac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{\left( {6.5 \times {{10}^{ - 7}}} \right)}}J \\ \]
\[\Rightarrow \phi = 3.1 \times {10^{ - 19}}J\]
As 1 eV is equal to \[1.6 \times {10^{ - 19}}J\]. So,
\[\phi = \dfrac{{3.1 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}eV \\ \]
\[\therefore \phi = 1.9\,eV \approx 2\,eV\]
Hence, the work function of the photoelectric metal is 2 eV.
Therefore, the correct option is A.
Note: The work function is inversely proportional to the threshold wavelength. The wavelength of the incident photon should be less than the threshold wavelength for the photoelectric event to occur.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The metal's threshold wavelength is the wavelength that corresponds to the minimal energy required to overcome the attractive attraction that binds the valence electron to the shell of the metal's atom. Because photon energy is inversely related to wavelength, the wavelength should be the highest permissible wavelength for a minimal value of energy.
For minimum conditions, the electron is just knocked out of the metal, i.e. the speed of the emitted electron is zero. Hence, the kinetic energy of the emitted electron is zero.
When the kinetic energy is zero, then the corresponding energy of the photon is called the work function of the metal.
The threshold wavelength is given as 6500 angstrom.
\[{\lambda _0} = 6500\mathop A\limits^ \circ \]
\[\Rightarrow {\lambda _0} = 6.5 \times {10^{ - 7}}m\]
Then the work function is,
\[\phi = \dfrac{{hc}}{{{\lambda _0}}} \\ \]
\[\Rightarrow \phi = \dfrac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{\left( {6.5 \times {{10}^{ - 7}}} \right)}}J \\ \]
\[\Rightarrow \phi = 3.1 \times {10^{ - 19}}J\]
As 1 eV is equal to \[1.6 \times {10^{ - 19}}J\]. So,
\[\phi = \dfrac{{3.1 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}eV \\ \]
\[\therefore \phi = 1.9\,eV \approx 2\,eV\]
Hence, the work function of the photoelectric metal is 2 eV.
Therefore, the correct option is A.
Note: The work function is inversely proportional to the threshold wavelength. The wavelength of the incident photon should be less than the threshold wavelength for the photoelectric event to occur.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main