Answer
Verified
112.8k+ views
Hint:If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The metal's threshold wavelength is the wavelength that corresponds to the minimal energy required to overcome the attractive attraction that binds the valence electron to the shell of the metal's atom. Because photon energy is inversely related to wavelength, the wavelength should be the highest permissible wavelength for a minimal value of energy.
For minimum conditions, the electron is just knocked out of the metal, i.e. the speed of the emitted electron is zero. Hence, the kinetic energy of the emitted electron is zero.
When the kinetic energy is zero, then the corresponding energy of the photon is called the work function of the metal.
The threshold wavelength is given as 6500 angstrom.
\[{\lambda _0} = 6500\mathop A\limits^ \circ \]
\[\Rightarrow {\lambda _0} = 6.5 \times {10^{ - 7}}m\]
Then the work function is,
\[\phi = \dfrac{{hc}}{{{\lambda _0}}} \\ \]
\[\Rightarrow \phi = \dfrac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{\left( {6.5 \times {{10}^{ - 7}}} \right)}}J \\ \]
\[\Rightarrow \phi = 3.1 \times {10^{ - 19}}J\]
As 1 eV is equal to \[1.6 \times {10^{ - 19}}J\]. So,
\[\phi = \dfrac{{3.1 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}eV \\ \]
\[\therefore \phi = 1.9\,eV \approx 2\,eV\]
Hence, the work function of the photoelectric metal is 2 eV.
Therefore, the correct option is A.
Note: The work function is inversely proportional to the threshold wavelength. The wavelength of the incident photon should be less than the threshold wavelength for the photoelectric event to occur.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The metal's threshold wavelength is the wavelength that corresponds to the minimal energy required to overcome the attractive attraction that binds the valence electron to the shell of the metal's atom. Because photon energy is inversely related to wavelength, the wavelength should be the highest permissible wavelength for a minimal value of energy.
For minimum conditions, the electron is just knocked out of the metal, i.e. the speed of the emitted electron is zero. Hence, the kinetic energy of the emitted electron is zero.
When the kinetic energy is zero, then the corresponding energy of the photon is called the work function of the metal.
The threshold wavelength is given as 6500 angstrom.
\[{\lambda _0} = 6500\mathop A\limits^ \circ \]
\[\Rightarrow {\lambda _0} = 6.5 \times {10^{ - 7}}m\]
Then the work function is,
\[\phi = \dfrac{{hc}}{{{\lambda _0}}} \\ \]
\[\Rightarrow \phi = \dfrac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{\left( {6.5 \times {{10}^{ - 7}}} \right)}}J \\ \]
\[\Rightarrow \phi = 3.1 \times {10^{ - 19}}J\]
As 1 eV is equal to \[1.6 \times {10^{ - 19}}J\]. So,
\[\phi = \dfrac{{3.1 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}eV \\ \]
\[\therefore \phi = 1.9\,eV \approx 2\,eV\]
Hence, the work function of the photoelectric metal is 2 eV.
Therefore, the correct option is A.
Note: The work function is inversely proportional to the threshold wavelength. The wavelength of the incident photon should be less than the threshold wavelength for the photoelectric event to occur.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
IIT JEE Main Maths 2025: Syllabus, Important Chapters, Weightage
Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses
Difference Between Distance and Displacement: JEE Main 2024
Difference Between CNG and LPG: JEE Main 2024
Difference between soap and detergent
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking