Answer
Verified
99.9k+ views
Hint:The length of time it takes for something to complete one oscillation is known as its time period. Normally, we can calculate frequency from angular velocity, and once we have calculated frequency, the inverse of that frequency provides us the time period. If an object is moving in a simple harmonic manner, the restoring force is found first, and the time period is calculated from there.
Formula used:
The time period for an oscillating bar magnet hanging horizontally in the geomagnetic field is given by:
$\mathrm{T}=2 \pi \sqrt{\dfrac{(\mathrm{I})}{(\mathrm{M}) \mathrm{B}_{\mathrm{H}}}}$
Here, $M$ is the magnetic moment, $B_H$ is the horizontal component of the magnetic field and $I$ is the moment of inertia.
Complete step by step solution:
We are aware that the time period for an oscillating bar magnet hanging horizontally in the geomagnetic field is given by:
$\mathrm{T}=2 \pi \sqrt{\dfrac{(\mathrm{I})}{(\mathrm{M}) \mathrm{B}_{\mathrm{H}}}}$
A magnetic moment, also referred to as a magnetic dipole moment, is a measurement of an object's tendency to align with a magnetic field. A vector quantity is the magnetic moment.
The magnetic moment vector frequently aligns with the magnetic field lines when the objects are positioned in that way. A magnet's magnetic moment is directed from its southern to northern poles. The magnetic field that a magnet creates is inversely related to its magnetic moment.
$\mathrm{T} \propto \dfrac{1}{\sqrt{\mathrm{M}}}$
Then it is inversely proportional to its magnetic moment.
Hence, the correct answer is option C.
Note: Oscillation is the continual transition of an object between two states or positions. It is also known as the periodic motion because it tends to repeat itself in predictable cycles. As an illustration, consider a sine wave with a side-to-side pendulum swing or an up-and-down motion with a spring's weight. The oscillating movement revolves around a mean value or an equilibrium point. The periodic motion is another name for this movement. Whether it is an up-down movement or a side-to-side movement, a single oscillation is regarded as a whole movement throughout time.
Formula used:
The time period for an oscillating bar magnet hanging horizontally in the geomagnetic field is given by:
$\mathrm{T}=2 \pi \sqrt{\dfrac{(\mathrm{I})}{(\mathrm{M}) \mathrm{B}_{\mathrm{H}}}}$
Here, $M$ is the magnetic moment, $B_H$ is the horizontal component of the magnetic field and $I$ is the moment of inertia.
Complete step by step solution:
We are aware that the time period for an oscillating bar magnet hanging horizontally in the geomagnetic field is given by:
$\mathrm{T}=2 \pi \sqrt{\dfrac{(\mathrm{I})}{(\mathrm{M}) \mathrm{B}_{\mathrm{H}}}}$
A magnetic moment, also referred to as a magnetic dipole moment, is a measurement of an object's tendency to align with a magnetic field. A vector quantity is the magnetic moment.
The magnetic moment vector frequently aligns with the magnetic field lines when the objects are positioned in that way. A magnet's magnetic moment is directed from its southern to northern poles. The magnetic field that a magnet creates is inversely related to its magnetic moment.
$\mathrm{T} \propto \dfrac{1}{\sqrt{\mathrm{M}}}$
Then it is inversely proportional to its magnetic moment.
Hence, the correct answer is option C.
Note: Oscillation is the continual transition of an object between two states or positions. It is also known as the periodic motion because it tends to repeat itself in predictable cycles. As an illustration, consider a sine wave with a side-to-side pendulum swing or an up-and-down motion with a spring's weight. The oscillating movement revolves around a mean value or an equilibrium point. The periodic motion is another name for this movement. Whether it is an up-down movement or a side-to-side movement, a single oscillation is regarded as a whole movement throughout time.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main