
The time period of a spring pendulum on earth is T. If it is taken on the mean and made to oscillate the period of vibration will be
(A) Less than T
(B) Equal to T
(C) More than T
(D) None of these
Answer
221.1k+ views
Hint: In this type of problem, first we have to remember the expression for the time period of the pendulum and check the dependency of time period with mass m, spring constant k and gravitational acceleration g.
Step by step answer: We know that the time period of spring pendulum on earth is given as $T = 2\pi \sqrt {\dfrac{m}{k}} $
Where
m $ = $ mass of pendulum
k $ = $ spring constant
From expression of time period, we can easily see that time period T. depends on mass of body in pendulum and spring constant k.
Time period of the pendulum does not depend on the gravitational acceleration g.
We know that when we take the pendulum at the moon then only gravitational acceleration g will change.
But the time period does not depend on g. So the time period remains the same.
Hence (B) is correct answer i.e., Equal to T
Note: In many problems of spring they can ask about the spring constant when spring is cutting into many parts.
When any spring is cut into n parts having spring constant k then the product of k and length of spring $\ell $ remains constant.
$k\ell = $constant
Step by step answer: We know that the time period of spring pendulum on earth is given as $T = 2\pi \sqrt {\dfrac{m}{k}} $
Where
m $ = $ mass of pendulum
k $ = $ spring constant
From expression of time period, we can easily see that time period T. depends on mass of body in pendulum and spring constant k.
Time period of the pendulum does not depend on the gravitational acceleration g.
We know that when we take the pendulum at the moon then only gravitational acceleration g will change.
But the time period does not depend on g. So the time period remains the same.
Hence (B) is correct answer i.e., Equal to T
Note: In many problems of spring they can ask about the spring constant when spring is cutting into many parts.
When any spring is cut into n parts having spring constant k then the product of k and length of spring $\ell $ remains constant.
$k\ell = $constant
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

