Answer
Verified
99.9k+ views
Hint If the motion takes place in a circular or a semicircular way, then the motion, velocity and the acceleration all are specified by the angular acceleration. The $SI$ unit is the standard system of units that is used mostly all over the world.
Useful formula
(1) The formula of the angular acceleration is given by
$\alpha = \dfrac{\omega }{t}$
Where $\alpha $ is the angular acceleration, $\omega $ is the angular velocity and the $t$ is the time taken for the angular movement.
(2) The formula of the angular velocity is given by
$\omega = \dfrac{\theta }{t}$
Where $\theta $ is the angular displacement.
Complete step by step solution
The angular acceleration is defined as the rate of change of the angular velocity with that of the time. Or it can also be defined as the twice the rate of change of the angular displacement with that of the time.
Using the formula of the angular acceleration,
$\alpha = \dfrac{\omega }{t}$
Substituting the formula (2) in the formula (1) , we get
$\alpha = \dfrac{{\dfrac{\theta }{t}}}{t}$
By simplification of the above equation, we get
$\alpha = \dfrac{\theta }{{{t^2}}}$
The $SI$ unit of the angular displacement is radians and the $SI$ unit of the time taken is second. Substituting these in the above formula, the $SI$ unit of the angular acceleration is obtained as $rad{s^{ - 2}}$ .
Thus the option (C) is correct.
Note Remember that the $SI$ unit of the length is metre, mass is kilogram, time is second, angular length is radian, and the temperature is kelvin. They are the fundamental quantity. The angular acceleration is the derived quantity that is obtained from the above fundamental quantities.
Useful formula
(1) The formula of the angular acceleration is given by
$\alpha = \dfrac{\omega }{t}$
Where $\alpha $ is the angular acceleration, $\omega $ is the angular velocity and the $t$ is the time taken for the angular movement.
(2) The formula of the angular velocity is given by
$\omega = \dfrac{\theta }{t}$
Where $\theta $ is the angular displacement.
Complete step by step solution
The angular acceleration is defined as the rate of change of the angular velocity with that of the time. Or it can also be defined as the twice the rate of change of the angular displacement with that of the time.
Using the formula of the angular acceleration,
$\alpha = \dfrac{\omega }{t}$
Substituting the formula (2) in the formula (1) , we get
$\alpha = \dfrac{{\dfrac{\theta }{t}}}{t}$
By simplification of the above equation, we get
$\alpha = \dfrac{\theta }{{{t^2}}}$
The $SI$ unit of the angular displacement is radians and the $SI$ unit of the time taken is second. Substituting these in the above formula, the $SI$ unit of the angular acceleration is obtained as $rad{s^{ - 2}}$ .
Thus the option (C) is correct.
Note Remember that the $SI$ unit of the length is metre, mass is kilogram, time is second, angular length is radian, and the temperature is kelvin. They are the fundamental quantity. The angular acceleration is the derived quantity that is obtained from the above fundamental quantities.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main