
The unit of permittivity of free space, $\varepsilon \circ $ is
(A) $\mathop {coulomb/newton - metre}\nolimits^{} $
(B) $\mathop {newton - metre}\nolimits^2 /\mathop {coulomb}\nolimits^2 $
(C) $\mathop {\mathop {coulomb}\nolimits^2 /newton}\nolimits^{} - \mathop {metre}\nolimits^2 $
(D) $\mathop {\mathop {coulomb}\nolimits^2 /(newton - \mathop {metre)}\nolimits^{} }\nolimits^2 $
Answer
139.8k+ views
Hint: permittivity of resistance to the electric field. Generally, permittivity of free space is represented by Farad/meter. Here the options are in the terms of charge, force and length. To find that unit, we can use coulomb’s law. Coulomb’s law can be written as $F = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \in \circ \mathop r\nolimits^2 }}$ , where $\mathop q\nolimits_1 and\mathop q\nolimits_2 $are two charges and r is the distance between two charges.
Complete step by step solution
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum of free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of $\mathop {8.85 \times 10}\nolimits^{ - 12} Farad/meter$
According to coulomb’s law, the force between two charges can be written as,
$F = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \in \circ \mathop r\nolimits^2 }}$ , where $\mathop q\nolimits_1 and\mathop q\nolimits_2 $are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
$ \in \circ = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \mathop {Fr}\nolimits^2 }}$
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
$ \Rightarrow \dfrac{{C.C}}{{\mathop {N.m}\nolimits^2 }}$
$ \Rightarrow \mathop C\nolimits^2 \mathop N\nolimits^{ - 1} \mathop m\nolimits^{ - 2} $
So, the correct option is D.
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. it doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Complete step by step solution
Permittivity is a property of a material that can tell about the resistance of a material against the formation of an electric field. It is defined as the amount of charge required for the generation of one unit of electric flux in a specific medium. It depends upon the property of the medium. Generally, a charge will yield more electric flux in a low permittivity medium than the high permittivity medium.
Permittivity of the vacuum of free space is the lowest possible permittivity. It is treated as a physical constant and it is known as an electric constant. It has a value of $\mathop {8.85 \times 10}\nolimits^{ - 12} Farad/meter$
According to coulomb’s law, the force between two charges can be written as,
$F = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \in \circ \mathop r\nolimits^2 }}$ , where $\mathop q\nolimits_1 and\mathop q\nolimits_2 $are two charges and r is the distance between two charges.
We can alter this equation to find the electric constant or permittivity of free space.
$ \in \circ = \dfrac{{\mathop q\nolimits_1 \mathop q\nolimits_2 }}{{4\pi \mathop {Fr}\nolimits^2 }}$
To find the SI unit of permittivity of free space, we can substitute all the SI units of given quantities of the above equation.
$ \Rightarrow \dfrac{{C.C}}{{\mathop {N.m}\nolimits^2 }}$
$ \Rightarrow \mathop C\nolimits^2 \mathop N\nolimits^{ - 1} \mathop m\nolimits^{ - 2} $
So, the correct option is D.
Note: Permittivity is actually the measurement of resistance to an electric field. Don’t confuse it with that name. it doesn’t mean the ability to permit. Relative permittivity is a ratio of permittivity of a medium to the permittivity of free space. Hence it doesn’t have units.
Recently Updated Pages
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
